• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Concentration for Coulomb gases and Coulomb transport inequalities

Chafaï, Djalil; Hardy, Adrien; Maïda, Mylène (2018), Concentration for Coulomb gases and Coulomb transport inequalities, Journal of Functional Analysis, 275, 6, p. 1447-1483. 10.1016/j.jfa.2018.06.004

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01374624v2
Date
2018
Journal name
Journal of Functional Analysis
Volume
275
Number
6
Publisher
Elsevier
Pages
1447-1483
Publication identifier
10.1016/j.jfa.2018.06.004
Metadata
Show full item record
Author(s)
Chafaï, Djalil cc
Hardy, Adrien
Maïda, Mylène
Abstract (EN)
We study the non-asymptotic behavior of Coulomb gases in dimension two and more. Such gases are modeled by an exchangeable Boltzmann-Gibbs measure with a singular two-body interaction. We obtain concentration of measure inequalities for the empirical distribution of such gases around their equilibrium measure, with respect to bounded Lipschitz and Wasserstein distances. This implies macroscopic as well as mesoscopic convergence in such distances. In particular, we improve the concentration inequalities known for the empirical spectral distribution of Ginibre random matrices. Our approach is remarkably simple and bypasses the use of renormalized energy. It crucially relies on new inequalities between probability metrics, including Coulomb transport inequalities which can be of independent interest. Our work is inspired by the one of Maïda and Maurel-Segala, itself inspired by large deviations techniques. Our approach allows to recover, extend, and simplify previous results by Rougerie and Serfaty.
Subjects / Keywords
Kantorovich distance; Concentration of measure; Wasserstein distance; Talagrand inequality; Transport inequality; Transport of measure; Coulomb gas; Ginibre ensemble; Random matrix

Related items

Showing items related by title and author.

  • Thumbnail
    Simulating Coulomb gases and log-gases with hybrid Monte Carlo algorithms 
    Chafaï, Djalil; Ferré, Gregoire (2019) Article accepté pour publication ou publié
  • Thumbnail
    Coulomb gases under constraint : some theoretical and numerical results 
    Chafaï, Djalil; Ferré, Grégoire; Stoltz, Gabriel (2019-07) Document de travail / Working paper
  • Thumbnail
    Coulomb gases under constraint: some theoretical and numerical results 
    Chafaï, Djalil; Ferré, Grégoire; Stoltz, Gabriel (2021) Article accepté pour publication ou publié
  • Thumbnail
    A note on the second order universality at the edge of Coulomb gases on the plane 
    Péché, Sandrine; Chafaï, Djalil (2014) Article accepté pour publication ou publié
  • Thumbnail
    Dynamics of a planar Coulomb gas 
    Bolley, François; Chafaï, Djalil; Fontbona, Joaquín (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo