Concentration for Coulomb gases and Coulomb transport inequalities
Chafaï, Djalil; Hardy, Adrien; Maïda, Mylène (2018), Concentration for Coulomb gases and Coulomb transport inequalities, Journal of Functional Analysis, 275, 6, p. 1447-1483. 10.1016/j.jfa.2018.06.004
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01374624v2Date
2018Journal name
Journal of Functional AnalysisVolume
275Number
6Publisher
Elsevier
Pages
1447-1483
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the non-asymptotic behavior of Coulomb gases in dimension two and more. Such gases are modeled by an exchangeable Boltzmann-Gibbs measure with a singular two-body interaction. We obtain concentration of measure inequalities for the empirical distribution of such gases around their equilibrium measure, with respect to bounded Lipschitz and Wasserstein distances. This implies macroscopic as well as mesoscopic convergence in such distances. In particular, we improve the concentration inequalities known for the empirical spectral distribution of Ginibre random matrices. Our approach is remarkably simple and bypasses the use of renormalized energy. It crucially relies on new inequalities between probability metrics, including Coulomb transport inequalities which can be of independent interest. Our work is inspired by the one of Maïda and Maurel-Segala, itself inspired by large deviations techniques. Our approach allows to recover, extend, and simplify previous results by Rougerie and Serfaty.Subjects / Keywords
Kantorovich distance; Concentration of measure; Wasserstein distance; Talagrand inequality; Transport inequality; Transport of measure; Coulomb gas; Ginibre ensemble; Random matrixRelated items
Showing items related by title and author.
-
Chafaï, Djalil; Ferré, Gregoire (2019) Article accepté pour publication ou publié
-
Chafaï, Djalil; Ferré, Grégoire; Stoltz, Gabriel (2019-07) Document de travail / Working paper
-
Chafaï, Djalil; Ferré, Grégoire; Stoltz, Gabriel (2021) Article accepté pour publication ou publié
-
Péché, Sandrine; Chafaï, Djalil (2014) Article accepté pour publication ou publié
-
Bolley, François; Chafaï, Djalil; Fontbona, Joaquín (2018) Article accepté pour publication ou publié