• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A numerical solution to Monge's problem with a Finsler distance as cost

Benamou, Jean-David; Carlier, Guillaume; Hatchi, Roméo (2018), A numerical solution to Monge's problem with a Finsler distance as cost, ESAIM: Mathematical Modelling and Numerical Analysis, 52, 6 (November-December 2018 ), p. 2133 - 2148. 10.1051/m2an/2016077

View/Open
m2an160009.pdf (3.372Mb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01261094
Date
2018
Journal name
ESAIM: Mathematical Modelling and Numerical Analysis
Volume
52
Number
6 (November-December 2018 )
Pages
2133 - 2148
Publication identifier
10.1051/m2an/2016077
Metadata
Show full item record
Author(s)
Benamou, Jean-David
INRIA Rocquencourt
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Hatchi, Roméo
Abstract (EN)
Monge's problem with a Finsler cost is intimately related to an optimal flow problem. Discretization of this problem and its dual leads to a well-posed finite-dimensional saddle-point problem which can be solved numerically relatively easily by an augmented Lagrangian approach in the same spirit as the Benamou-Brenier method for the optimal transport problem with quadratic cost. Numerical results validate the method. We also emphasize that the algorithm only requires elementary operations and in particular never involves evaluation of the Finsler distance or of geodesics.
Subjects / Keywords
Monge's problem; Finsler distance; augmented Lagrangian

Related items

Showing items related by title and author.

  • Thumbnail
    A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost 
    Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017) Chapitre d'ouvrage
  • Thumbnail
    An Augmented Lagrangian Numerical approach to solving Mean-Fields Games 
    Benamou, Jean-David; Carlier, Guillaume; Bonne, Nicolas (2013) Rapport
  • Thumbnail
    Discretization of functionals involving the Monge-Ampère operator 
    Benamou, Jean-David; Carlier, Guillaume; Mérigot, Quentin; Oudet, Edouard (2016) Article accepté pour publication ou publié
  • Thumbnail
    Iterative Bregman Projections for Regularized Transportation Problems 
    Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyré, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    An augmented Lagrangian approach to Wasserstein gradient flows and applications 
    Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo