Show simple item record

hal.structure.identifier
dc.contributor.authorHairer, Martin*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorLabbé, Cyril
HAL ID: 9675
*
dc.date.accessioned2018-01-15T13:48:16Z
dc.date.available2018-01-15T13:48:16Z
dc.date.issued2018
dc.identifier.issn1435-9855
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17332
dc.language.isoenen
dc.subjectStochastic partial differential equations
dc.subjectNumerical solutions
dc.subjectAnderson model
dc.subjectMathematical models
dc.subject.ddc515en
dc.titleMultiplicative stochastic heat equations on the whole space
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe carry out the construction of some ill-posed multiplicative stochastic heat equations on unbounded domains. The two main equations our result covers are, on the one hand the parabolic Anderson model on R3, and on the other hand the KPZ equation on R via the Cole-Hopf transform. To perform these constructions, we adapt the theory of regularity structures to the setting of weighted Besov spaces. One particular feature of our construction is that it allows one to start both equations from a Dirac mass at the initial time.
dc.relation.isversionofjnlnameJournal of the European Mathematical Society
dc.relation.isversionofjnlvol20
dc.relation.isversionofjnlissue4
dc.relation.isversionofjnldate2018
dc.relation.isversionofjnlpages1005-1054
dc.relation.isversionofdoi10.4171/JEMS/781
dc.relation.isversionofjnlpublisherEuropean Mathematical Society
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingouien
dc.relation.forthcomingprintouien
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2019-09-20T08:28:38Z
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record