• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

A Bernstein-von Mises theorem for smooth functionals in semiparametric models

Castillo, Ismaël; Rousseau, Judith (2015), A Bernstein-von Mises theorem for smooth functionals in semiparametric models, The Annals of Statistics, 43, 6, p. 2353-2383. 10.1214/15-AOS1336

Voir/Ouvrir
1305.4482.pdf (333.0Kb)
Type
Article accepté pour publication ou publié
Date
2015
Nom de la revue
The Annals of Statistics
Volume
43
Numéro
6
Pages
2353-2383
Identifiant publication
10.1214/15-AOS1336
Métadonnées
Afficher la notice complète
Auteur(s)
Castillo, Ismaël
Laboratoire de Probabilités et Modèles Aléatoires [LPMA]
Rousseau, Judith
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Centre de Recherche en Économie et Statistique [CREST]
Résumé (EN)
A Bernstein–von Mises theorem is derived for general semiparametric functionals. The result is applied to a variety of semiparametric problems in i.i.d. and non-i.i.d. situations. In particular, new tools are developed to handle semiparametric bias, in particular for nonlinear functionals and in cases where regularity is possibly low. Examples include the squared L2-norm in Gaussian white noise, nonlinear functionals in density estimation, as well as functionals in autoregressive models. For density estimation, a systematic study of BvM results for two important classes of priors is provided, namely random histograms and Gaussian process priors.
Mots-clés
Bayesian nonparametrics; Bernstein–von Mises theorem; posterior concentration; semiparametric inference

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Bernstein–von Mises theorem for linear functionals of the density 
    Rivoirard, Vincent; Rousseau, Judith (2012) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Efficient semiparametric estimation and model selection for multidimensional mixtures 
    Gassiat, Elisabeth; Rousseau, Judith; Vernet, Elodie (2018) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    On some aspects of the asymptotic properties of Bayesian approaches in nonparametric and semiparametric models 
    Scricciolo, Catia; Salomond, Jean-Bernard; Rousseau, Judith (2014-01-30) Communication / Conférence
  • Vignette de prévisualisation
    Use in practice of importance sampling for repeated MCMC for Poisson models 
    Gajda, Dorota; Guihenneuc-Jouyaux, Chantal; Rousseau, Judith; Mengersen, Kerrie; Nur, Darfiana (2010) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Hidden Markov models for complex stochastic processes: A case study in electrophysiology. 
    Mengersen, Kerrie; Rousseau, Judith; Silburn, Peter; Johnson, Helen; White, Nicole M. (2012) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo