• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift

Berger, Quentin; Lacoin, Hubert (2018), Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, Journal de l'Institut de Mathématiques de Jussieu, 17, 2, p. 305-346. 10.1017/S1474748015000481

View/Open
MarginalpinningSubmission.pdf (538.7Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
Journal de l'Institut de Mathématiques de Jussieu
Volume
17
Number
2
Pages
305-346
Publication identifier
10.1017/S1474748015000481
Metadata
Show full item record
Author(s)
Berger, Quentin cc
Lacoin, Hubert
Abstract (EN)
The effect of disorder for pinning models is a subject which has attracted much attention in theoretical physics and rigorous mathematical physics. A peculiar point of interest is the question of coincidence of the quenched and annealed critical point for a small amount of disorder. The question has been mathematically settled in most cases in the last few years, giving in particular a rigorous validation of the Harris Criterion on disorder relevance. However, the marginal case, where the return probability exponent is equal to 1/2, i.e. where the inter-arrival law of the renewal process is given by K(n)=n−3/2ϕ(n) where ϕ is a slowly varying function, has been left partially open. In this paper, we give a complete answer to the question by proving a simple necessary and sufficient criterion on the return probability for disorder relevance, which confirms earlier predictions from the literature. Moreover, we also provide sharp asymptotics on the critical point shift: in the case of the pinning (or wetting) of a one dimensional simple random walk, the shift of the critical point satisfies the following high temperature asymptoticslimβ→0β2loghc(β)=−π2.This gives a rigorous proof to a claim of B. Derrida, V. Hakim and J. Vannimenus (Journal of Statistical Physics, 1992).
Subjects / Keywords
Harris Criterion; Disordered Pinning/Wetting Model; Localization Transition; Disorder Relevance

Related items

Showing items related by title and author.

  • Thumbnail
    Sharp critical behavior for pinning model in random correlated environment 
    Berger, Quentin; Lacoin, Hubert (2012) Article accepté pour publication ou publié
  • Thumbnail
    On the critical curves of the pinning and copolymer models in correlated Gaussian environment 
    Berger, Quentin; Poisat, Julien (2015) Article accepté pour publication ou publié
  • Thumbnail
    The rounding of the phase transition for disordered pinning with stretched exponential tails 
    Lacoin, Hubert (2017) Article accepté pour publication ou publié
  • Thumbnail
    The Scaling Limit of Polymer Pinning Dynamics and a One Dimensional Stefan Freezing Problem 
    Lacoin, Hubert (2014) Article accepté pour publication ou publié
  • Thumbnail
    Disorder and wetting transition: The pinned harmonic crystal in dimension three or larger 
    Giacomin, Giambattista; Lacoin, Hubert (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo