
On a Nonlinear Parabolic Problem arising in the Quantum Diffusive Description of a Degenerate Fermion Gas
Barletti, Luigi; Salvarani, Francesco (2016), On a Nonlinear Parabolic Problem arising in the Quantum Diffusive Description of a Degenerate Fermion Gas, SIAM Journal on Applied Mathematics, 76, 3, p. 867 - 886. 10.1137/140998263
View/ Open
Type
Article accepté pour publication ou publiéDate
2016Journal name
SIAM Journal on Applied MathematicsVolume
76Number
3Publisher
Society for Industrial and Applied Mathematics
Pages
867 - 886
Publication identifier
Metadata
Show full item recordAuthor(s)
Barletti, LuigiDipartimento di Matematica e Informatica [Firenze] [DiMal]
Salvarani, Francesco
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Dipartimento di matematica F. Casorati
Abstract (EN)
This article studies, both theoretically and numerically, a nonlinear drift-diffusion equation describing a gas of fermions in the zero-temperature limit. The equation is considered on a bounded domain whose boundary is divided into an insulating " part, where homogeneous Neumann conditions are imposed, and a " contact " part, where non-homogeneous Dirichlet data are assigned. The existence of stationary solutions for a suitable class of Dirichlet data is proven by assuming a simple domain configuration. The long-time behavior of the time-dependent solution, for more complex domain configurations, is investigated by means of numerical experiments.Subjects / Keywords
quantum drift diffusion; fermions; nonlinear parabolic equations; mixed boundary conditionsRelated items
Showing items related by title and author.
-
Anwasia, Benjamin; Bisi, Marzia; Salvarani, Francesco; Soares, Ana Jacinta (2019-06) Document de travail / Working paper
-
Hutridurga, Harsha; Salvarani, Francesco (2017) Article accepté pour publication ou publié
-
Catto, Isabelle; Cancès, Eric; Gati, Yousra (2005) Article accepté pour publication ou publié
-
Salvarani, Francesco; Soares, Ana Jacinta (2018) Article accepté pour publication ou publié
-
Salvarani, Francesco; Tonon, Daniela (2017-04) Document de travail / Working paper