• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On a Nonlinear Parabolic Problem arising in the Quantum Diffusive Description of a Degenerate Fermion Gas

Barletti, Luigi; Salvarani, Francesco (2016), On a Nonlinear Parabolic Problem arising in the Quantum Diffusive Description of a Degenerate Fermion Gas, SIAM Journal on Applied Mathematics, 76, 3, p. 867 - 886. 10.1137/140998263

View/Open
BaSa_SIAP-revised_2.pdf (818.6Kb)
Type
Article accepté pour publication ou publié
Date
2016
Journal name
SIAM Journal on Applied Mathematics
Volume
76
Number
3
Publisher
Society for Industrial and Applied Mathematics
Pages
867 - 886
Publication identifier
10.1137/140998263
Metadata
Show full item record
Author(s)
Barletti, Luigi
Dipartimento di Matematica e Informatica [Firenze] [DiMal]
Salvarani, Francesco
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Dipartimento di matematica F. Casorati
Abstract (EN)
This article studies, both theoretically and numerically, a nonlinear drift-diffusion equation describing a gas of fermions in the zero-temperature limit. The equation is considered on a bounded domain whose boundary is divided into an insulating " part, where homogeneous Neumann conditions are imposed, and a " contact " part, where non-homogeneous Dirichlet data are assigned. The existence of stationary solutions for a suitable class of Dirichlet data is proven by assuming a simple domain configuration. The long-time behavior of the time-dependent solution, for more complex domain configurations, is investigated by means of numerical experiments.
Subjects / Keywords
quantum drift diffusion; fermions; nonlinear parabolic equations; mixed boundary conditions

Related items

Showing items related by title and author.

  • Thumbnail
    On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non- isothermal setting. 
    Anwasia, Benjamin; Bisi, Marzia; Salvarani, Francesco; Soares, Ana Jacinta (2019-06) Document de travail / Working paper
  • Thumbnail
    On the Maxwell–Stefan diffusion limit for a mixture of monatomic gases 
    Hutridurga, Harsha; Salvarani, Francesco (2017) Article accepté pour publication ou publié
  • Thumbnail
    Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-newtonian flows 
    Catto, Isabelle; Cancès, Eric; Gati, Yousra (2005) Article accepté pour publication ou publié
  • Thumbnail
    On the relaxation of the Maxwell–Stefan system to linear diffusion 
    Salvarani, Francesco; Soares, Ana Jacinta (2018) Article accepté pour publication ou publié
  • Thumbnail
    Kinetic description of strategic binary games 
    Salvarani, Francesco; Tonon, Daniela (2017-04) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo