• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On the reconstruction of convex sets from random normal measurements

Abdallah, Hiba; Mérigot, Quentin (2015), On the reconstruction of convex sets from random normal measurements, Discrete and Computational Geometry, 53, 3, p. 569-586. 10.1007/s00454-015-9673-2

View/Open
minkowski.pdf (366.2Kb)
Type
Article accepté pour publication ou publié
Date
2015
Journal name
Discrete and Computational Geometry
Volume
53
Number
3
Pages
569-586
Publication identifier
10.1007/s00454-015-9673-2
Metadata
Show full item record
Author(s)
Abdallah, Hiba
Laboratoire Jean Kuntzmann [LJK]
Mérigot, Quentin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study the problem of reconstructing a convex body using only a finite number of measurements of outer normal vectors. More precisely, we suppose that the normal vectors are measured at independent random locations uniformly distributed along the boundary of our convex set. Given a desired Hausdorff error $\eta$, we provide an upper bounds on the number of probes that one has to perform in order to obtain an $\eta$-approximation of this convex set with high probability. Our result rely on the stability theory related to Minkowski's theorem.
Subjects / Keywords
Minkowski problem; surface area measure; random sampling

Related items

Showing items related by title and author.

  • Thumbnail
    Increasing the robustness and applicability of full-waveform inversion: An optimal transport distance strategy 
    Métivier, L.; Brossier, Romain; Mérigot, Quentin; Oudet, Édouard; Virieux, Jean (2016) Article accepté pour publication ou publié
  • Thumbnail
    Discretization of functionals involving the Monge-Ampère operator 
    Benamou, Jean-David; Carlier, Guillaume; Mérigot, Quentin; Oudet, Edouard (2016) Article accepté pour publication ou publié
  • Thumbnail
    Conditional Cores and Conditional Convex Hulls of Random Sets 
    Lépinette, Emmanuel; Molchanov, Ilya (2019) Article accepté pour publication ou publié
  • Thumbnail
    On the complexity of minimizing median normal forms of monotone Boolean functions and lattice polynomials 
    Couceiro, M.; Mercuriali, Pierre; Péchoux, Romain; Saffidine, Abdallah (2019) Article accepté pour publication ou publié
  • Thumbnail
    Choosing Collectively Optimal Sets of Alternatives Based on the Condorcet Criterion 
    Elkind, Edith; Lang, Jérôme; Saffidine, Abdallah (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo