Anderson localisation for infinitely many interacting particles in Hartree-Fock theory
Ducatez, Raphaël (2018), Anderson localisation for infinitely many interacting particles in Hartree-Fock theory, Journal of Spectral Theory, 8, 3, p. 1019-1050. 10.4171/JST/221
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01271084Date
2018Journal name
Journal of Spectral TheoryVolume
8Number
3Publisher
European Mathematical Society
Pages
1019-1050
Publication identifier
Metadata
Show full item recordAuthor(s)
Ducatez, RaphaëlAbstract (EN)
We prove the occurrence of Anderson localisation for a system of infinitely many particles interacting with a short range potential, within the ground state Hartree-Fock approximation. We assume that the particles hop on a discrete lattice and that they are submitted to an external periodic potential which creates a gap in the non-interacting one particle Hamiltonian. We also assume that the interaction is weak enough to preserve a gap. We prove that the mean-field operator has exponentially localised eigenvectors, either on its whole spectrum or at the edges of its bands, depending on the strength of the disorder.Subjects / Keywords
multiscale analysis.; Hartree-Fock theory; Anderson localisationRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Felmer, Patricio; Lewin, Mathieu (2009) Article accepté pour publication ou publié
-
Fischer, Patrick; Defranceschi, Mireille; Delhalle, Joseph (1992) Article accepté pour publication ou publié
-
Huveneers, François; Ducatez, Raphaël (2017) Article accepté pour publication ou publié
-
Ducatez, Raphaël (2019) Article accepté pour publication ou publié
-
Lions, Pierre-Louis (1989) Article accepté pour publication ou publié