Show simple item record

dc.contributor.authorBruveris, Martins
dc.contributor.authorVialard, François-Xavier
dc.date.accessioned2018-01-08T11:58:44Z
dc.date.available2018-01-08T11:58:44Z
dc.date.issued2017
dc.identifier.issn1435-9855
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17247
dc.language.isoenen
dc.subjectStrong Riemannian metricen
dc.subjectSobolev metricsen
dc.subjectCompletenessen
dc.subjectDiffeomorphism groupsen
dc.subjectMinimizing geodesicen
dc.subject.ddc519en
dc.titleOn Completeness of Groups of Diffeomorphismsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study completeness properties of the Sobolev diffeomorphism groups Ds(M) endowed with strong right-invariant Riemannian metrics when the underlying manifold M is ℝd or compact without boundary. The main result is that for dimM/2 + 1, the group Ds (M) is geodesically and metrically complete with a surjective exponential map. We also extend the result to its closed subgroups, in particular the group of volume preserving diffeomorphisms and the group of symplectomorphisms. We then present the connection between the Sobolev diffeomorphism group and the large deformation matching framework in order to apply our results to diffeomorphic image matching.en
dc.relation.isversionofjnlnameJournal of the European Mathematical Society
dc.relation.isversionofjnlvol19en
dc.relation.isversionofjnlissue5en
dc.relation.isversionofjnldate2017
dc.relation.isversionofjnlpages1507–1544en
dc.relation.isversionofdoi10.4171/JEMS/698en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2018-01-08T11:51:17Z
hal.person.labIds4553
hal.person.labIds60


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record