Show simple item record

dc.contributor.authorBouin, Emeric
dc.contributor.authorHenderson, Christopher
dc.contributor.authorRyzhik, Lenya
dc.date.accessioned2017-12-14T16:07:51Z
dc.date.available2017-12-14T16:07:51Z
dc.date.issued2017
dc.identifier.issn0021-7824
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17232
dc.description.abstractfrDans cet article, nous prouvons un résultat de propagation accélérée pour une équation de réaction–diffusion–mutation non locale qui modélise l'invasion de crapauds buffles en Australie. La population de crapauds est structurée en phénotype, et ce phénotype modifie le coefficient de diffusion spatiale. Nous considérons le cas de diffusivités non bornées, et nous prouvons que le taux de propagation est t32. Nous obtenons aussi le taux précis d'accélération pour un modèle local associé.
dc.language.isoenen
dc.subjectStructured populations
dc.subjectNon-local reaction–diffusion equations
dc.subjectFront acceleration
dc.subject.ddc515en
dc.titleSuper-linear spreading in local and non-local cane toads equations
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we show super-linear propagation in a nonlocal reaction-diffusion-mutation equation modeling the invasion of cane toads in Australia that has attracted attention recently from the mathematical point of view. The population of toads is structured by a phenotypical trait that governs the spatial diffusion. In this paper, we are concerned with the case when the diffusivity can take unbounded values, and we prove that the population spreads as $t^{3/2}$. We also get the sharp rate of spreading in a related local model.
dc.relation.isversionofjnlnameJournal de mathématiques pures et appliquées
dc.relation.isversionofjnlvol108
dc.relation.isversionofjnlissue5
dc.relation.isversionofjnldate2017
dc.relation.isversionofjnlpages724-750
dc.relation.isversionofdoi10.1016/j.matpur.2017.05.015
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01248264
dc.relation.isversionofjnlpublisherBachelier
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2017-12-15T17:00:54Z


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record