Spreading in kinetic reaction-transport equations in higher velocity dimensions
Bouin, Emeric; Caillerie, Nils (2019), Spreading in kinetic reaction-transport equations in higher velocity dimensions, European Journal of Applied Mathematics. 10.1017/S0956792518000037
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01518398Date
2019Journal name
European Journal of Applied MathematicsPublication identifier
Metadata
Show full item recordAuthor(s)
Bouin, EmericCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Caillerie, Nils
Institut Camille Jordan [Villeurbanne] [ICJ]
Abstract (EN)
In this paper, we extend and complement previous works about propagation in kinetic reaction-transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large scale hyperbolic limit via an Hamilton-Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first order condition.Subjects / Keywords
travelling waves; Kinetic equations; dispersion relationRelated items
Showing items related by title and author.
-
Bouin, Emeric; Henderson, Christopher (2017) Article accepté pour publication ou publié
-
Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya (2017) Article accepté pour publication ou publié
-
Bouin, Emeric; Calvez, Vincent; Grenier, Emmanuel; Nadin, Grégoire (2016) Document de travail / Working paper
-
Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian (2020) Article accepté pour publication ou publié
-
Bouin, Emeric; Mouhot, Clément (2022) Document de travail / Working paper