Thin front limit of an integro–differential Fisher–KPP equation with fat–tailed kernels
Bouin, Emeric; Garnier, Jimmy; Henderson, Christopher; Patout, Florian (2018), Thin front limit of an integro–differential Fisher–KPP equation with fat–tailed kernels, SIAM Journal on Mathematical Analysis, 50, 3, p. 3365-3394. 10.1137/17M1132501
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01528812Date
2018Journal name
SIAM Journal on Mathematical AnalysisVolume
50Number
3Publisher
SIAM
Pages
3365-3394
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the asymptotic behavior of solutions to a monostable integro-differential Fisher-KPP equation , that is where the standard Laplacian is replaced by a convolution term, when the dispersal kernel is fat-tailed. We focus on two different regimes. Firstly, we study the long time/long range scaling limit by introducing a relevant rescaling in space and time and prove a sharp bound on the (super-linear) spreading rate in the Hamilton-Jacobi sense by means of sub-and super-solutions. Secondly, we investigate a long time/small mutation regime for which, after identifying a relevant rescaling for the size of mutations, we derive a Hamilton-Jacobi limit.Subjects / Keywords
integro-differential Fisher-KPP equationRelated items
Showing items related by title and author.
-
Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya (2020) Article accepté pour publication ou publié
-
Bouin, Emeric; Chan, Matthew H.; Henderson, Christopher; Kim, Peter S. (2018) Article accepté pour publication ou publié
-
Sulem, Agnès; Quenez, Marie-Claire; Dumitrescu, Roxana (2013) Rapport
-
Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya (2017) Article accepté pour publication ou publié
-
Bouin, Emeric; Henderson, Christopher (2017) Article accepté pour publication ou publié