• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Influence of a mortality trade-off on the spreading rate of cane toads fronts

Bouin, Emeric; Chan, Matthew H.; Henderson, Christopher; Kim, Peter S. (2017), Influence of a mortality trade-off on the spreading rate of cane toads fronts. https://basepub.dauphine.fr/handle/123456789/17205

Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-01451448
Date
2017
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Pages
40
Metadata
Show full item record
Author(s)
Bouin, Emeric
Chan, Matthew H.
Henderson, Christopher
Kim, Peter S.
Abstract (EN)
In this paper, we study the influence of the mortality trade-off in a nonlocal reaction-diffusion-mutation equation that we introduce to model the invasion of cane toads in Australia. This model is built off of one that has attracted attention recently, in which the population of toads is structured by a phenotypical trait that governs the spatial diffusion. We are concerned with the case when the diffusivity can take unbounded values and the mortality trade-off depends only on the trait variable. Depending on the rate of increase of the penalization term, we obtain the rate of spreading of the population. We identify two regimes, an acceleration regime when the penalization is weak and a linear spreading regime when the penalization is strong. While the development of the model comes from biological principles, the bulk of the article is dedicated to the mathematical analysis of the model, which is very technical.
Subjects / Keywords
Structured populations; reaction-diffusion equations; front acceleration

Related items

Showing items related by title and author.

  • Thumbnail
    Super-linear spreading in local bistable cane toads equations 
    Bouin, Emeric; Henderson, Christopher (2017) Article accepté pour publication ou publié
  • Thumbnail
    Super-linear spreading in local and non-local cane toads equations 
    Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya (2017) Article accepté pour publication ou publié
  • Thumbnail
    The Bramson logarithmic delay in the cane toads equations 
    Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya (2017) Article accepté pour publication ou publié
  • Thumbnail
    Thin front limit of an integro–differential Fisher–KPP equation with fat–tailed kernels 
    Bouin, Emeric; Garnier, Jimmy; Henderson, Christopher; Patout, Florian (2018) Article accepté pour publication ou publié
  • Thumbnail
    The Bramson delay in the non-local Fisher-KPP equation 
    Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya (2017) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo