Double exponential stability for generic real-analytic elliptic equilibrium points
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2015), Double exponential stability for generic real-analytic elliptic equilibrium points. https://basepub.dauphine.fr/handle/123456789/17158
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01188980Date
2015Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
51
Metadata
Show full item recordAbstract (EN)
We consider the dynamics in a neighborhood of an elliptic equilibrium point with a Diophantine frequency of a symplectic real analytic vector field and we prove the following result of effective stability. Generically, both in a topological and measure-theoretical sense, any solution starting sufficiently close to the equilibrium point remains close to it for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the equilibrium point. We actually prove a more general statement assuming the frequency is only non-resonant. This improves previous results where much stronger non-generic assumptions were required.Subjects / Keywords
elliptic equilibrium pointsRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2020) Article accepté pour publication ou publié
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2019) Article accepté pour publication ou publié
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2017) Article accepté pour publication ou publié
-
Bounemoura, Abed; Kaloshin, Vadim (2014) Article accepté pour publication ou publié
-
Bounemoura, Abed (2016) Article accepté pour publication ou publié