General limit value in zero-sum stochastic games
Ziliotto, Bruno (2016), General limit value in zero-sum stochastic games, International Journal of Game Theory, 45, 1, p. 353-374. http://dx.doi.org/10.1007/s00182-015-0509-3
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://arxiv.org/abs/1410.5231v2Date
2016Nom de la revue
International Journal of Game TheoryVolume
45Numéro
1Éditeur
Springer
Pages
353-374
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Bewley and Kohlberg (Math Oper Res 1(3):197–208, 1976) and Mertens and Neyman (Int J Game Theory 10(2):53–66, 1981) have respectively proved the existence of the asymptotic value and the uniform value in zero-sum stochastic games with finite state space and finite action sets. In their work, the total payoff in a stochastic game is defined either as a Cesaro mean or an Abel mean of the stage payoffs. The contribution of this paper is twofold: first, it generalizes the result of Bewley and Kohlberg (1976) to a more general class of payoff evaluations, and it proves with an example that this new result is tight. It also investigates the particular case of absorbing games. Second, for the uniform approach of Mertens and Neyman, this paper provides an example of absorbing game to demonstrate that there is no natural way to generalize their result to a wider class of payoff evaluations.Mots-clés
Stochastic games; Weighted payoffs; Asymptotic value; Shapley operator; Uniform valuePublications associées
Affichage des éléments liés par titre et auteur.
-
Ziliotto, Bruno (2018) Article accepté pour publication ou publié
-
Catoni, Olivier; Oliu-Barton, Miquel; Ziliotto, Bruno (2021) Article accepté pour publication ou publié
-
Sorin, Sylvain; Vigeral, Guillaume (2020) Article accepté pour publication ou publié
-
Vigeral, Guillaume; Sorin, Sylvain (2013) Article accepté pour publication ou publié
-
Sorin, Sylvain; Vigeral, Guillaume (2015) Document de travail / Working paper