• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Estimator selection: a new method with applications to kernel density estimation

Lacour, Claire; Massart, Pascal; Rivoirard, Vincent (2017), Estimator selection: a new method with applications to kernel density estimation, Sankhya, 79, 2, p. 298-335. 10.1007/s13171-017-0107-5

View/Open
PCO_rev.pdf (429.9Kb)
Type
Article accepté pour publication ou publié
Date
2017
Journal name
Sankhya
Volume
79
Number
2
Publisher
India statistical Institute
Pages
298-335
Publication identifier
10.1007/s13171-017-0107-5
Metadata
Show full item record
Author(s)
Lacour, Claire
Massart, Pascal
Rivoirard, Vincent
Abstract (EN)
Estimator selection has become a crucial issue in non parametric estimation. Two widely used methods are penalized empirical risk minimization (such as penalized log-likelihood estimation) or pairwise comparison (such as Lepski's method). Our aim in this paper is twofold. First we explain some general ideas about the calibration issue of estimator selection methods. We review some known results, putting the emphasis on the concept of minimal penalty which is helpful to design data-driven selection criteria. Secondly we present a new method for bandwidth selection within the framework of kernel density density estimation which is in some sense intermediate between these two main methods mentioned above. We provide some theoretical results which lead to some fully data-driven selection strategy.
Subjects / Keywords
Estimator selection; Kernel density estimation; Minimal penalty

Related items

Showing items related by title and author.

  • Thumbnail
    Numerical performance of Penalized Comparison to Overfitting for multivariate kernel density estimation 
    Varet, Suzanne; Lacour, Claire; Massart, Pascal; Rivoirard, Vincent (2019) Document de travail / Working paper
  • Thumbnail
    Adaptive greedy algorithm for moderately large dimensions in kernel conditional density estimation 
    Nguyen, Minh-Lien; Lacour, Claire; Rivoirard, Vincent (2022) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive pointwise estimation of conditional density function 
    Bertin, Karine; Lacour, Claire; Rivoirard, Vincent (2016) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive warped kernel estimation for nonparametric regression with circular responses 
    Nguyen, Tien-Dat; Pham Ngoc, Thanh Mai; Rivoirard, Vincent (2022) Document de travail / Working paper
  • Thumbnail
    Uniform Deconvolution for Poisson Point Processes 
    Bonnet, Anna; Lacour, Claire; Picard, Franck; Rivoirard, Vincent (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo