
Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation
Mischler, Stéphane; Mouhot, Clément (2016), Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation, Archive for Rational Mechanics and Analysis, 221, 2, p. 677-723. 10.1007/s00205-016-0972-4
View/ Open
Type
Article accepté pour publication ou publiéDate
2016Journal name
Archive for Rational Mechanics and AnalysisVolume
221Number
2Publisher
Springer
Pages
677-723
Publication identifier
Metadata
Show full item recordAuthor(s)
Mischler, StéphaneMouhot, Clément
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The aim of the present paper is twofold:(1) We carry on with developing an abstract method for deriving decay estimates on the semigroup associated to non-symmetric operators in Banach spaces as introduced in [10]. We extend the method so as to consider the shrinkage of the functional space. Roughly speaking, we consider a class of operators writing as a dissipative part plus a mild perturbation, and we prove that if the associated semigroup satisfies a decay estimate in some reference space then it satisfies the same decay estimate in another—smaller or larger—Banach space under the condition that a certain iterate of the “mild perturba- tion” part of the operator combined with the dissipative part of the semigroup maps the larger space to the smaller space in a bounded way. The cornerstone of our approach is a factorization argument, reminiscent of the Dyson series.(2) We apply this method to the kinetic Fokker-Planck equation when the spatial domain is either the torus with periodic boundary conditions, or the whole space with a confinement potential. We then obtain spectral gap es- timates for the associated semigroup for various metrics, including Lebesgue norms, negative Sobolev norms, and the Monge-Kantorovich-Wasserstein distance W_1.Subjects / Keywords
Fokker-Planck equation; Kolmogorov-Fokker-Planck equation; hypocoercivity; hypodissipativity; spectral mapping theorem; semigroup; enlargement; spectral gapRelated items
Showing items related by title and author.
-
Gualdani, Maria Pia; Gamba, Irene M.; Mischler, Stéphane; Sparber, Christof; Arnold, Anton; Mouhot, Clément (2012) Article accepté pour publication ou publié
-
Uniform semigroup spectral analysis of the discrete, fractional & classical Fokker-Planck equations Mischler, Stéphane; Tristani, Isabelle (2015) Document de travail / Working paper
-
Mouhot, Clément; Mischler, Stéphane (2009) Article accepté pour publication ou publié
-
Cao, Chuqi (2019-10-10) Thèse
-
Mouhot, Clément; Mischler, Stéphane (2009) Article accepté pour publication ou publié