• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Multilevel clustering models and interval convexities

Bertrand, Patrice; Diatta, Jean (2017), Multilevel clustering models and interval convexities, Discrete Applied Mathematics, 222, p. 54-66. 10.1016/j.dam.2016.12.019

Type
Article accepté pour publication ou publié
Date
2017
Journal name
Discrete Applied Mathematics
Volume
222
Publisher
Elsevier
Pages
54-66
Publication identifier
10.1016/j.dam.2016.12.019
Metadata
Show full item record
Author(s)
Bertrand, Patrice
Diatta, Jean
Abstract (EN)
The -weakly hierarchical, pyramidal and paired hierarchical models are alternative multilevel clustering models that extend hierarchical clustering. In this paper, we study these various multilevel clustering models in the framework of general convexity. We prove a characterization of the paired hierarchical model via a four-point condition on the segment operator, and examine the case of -weakly hierarchical models for . We also prove sufficient conditions for an interval convexity to be either hierarchical, paired hierarchical, pyramidal, weakly hierarchical or -weakly hierarchical. Moreover, we propose a general algorithm for computing the interval convexity induced by any given interval operator, and deduce a unified clustering scheme for capturing either of the considered multilevel clustering models. We illustrate our results with two interval operators that can be defined from any dissimilarity index and propose a parameterized definition of an adaptive interval operator for cluster analysis.
Subjects / Keywords
Abstract convexity; Interval operator; Pyramidal clustering model; weak hierarchy; Paired hierarchy

Related items

Showing items related by title and author.

  • Thumbnail
    Convexités d'intervalle et systèmes de classification 
    Bertrand, Patrice; Diatta, Jean (2014-09) Communication / Conférence
  • Thumbnail
    Prepyramidal clustering and Robinsonian dissimilarities: one-to-one correspondences 
    Bertrand, Patrice; Diatta, Jean (2013) Article accepté pour publication ou publié
  • Thumbnail
    Séparation ternaire et propriété de convexité des structures de classification 
    Bertrand, Patrice; Diatta, Jean (2012) Communication / Conférence
  • Thumbnail
    Weak Hierarchies: A Central Clustering Structure 
    Bertrand, Patrice; Diatta, Jean (2014) Chapitre d'ouvrage
  • Thumbnail
    Prepyramidal clustering and Robinsonian dissimilarities: one‐to‐one correspondences 
    Bertrand, P.; Diatta, Jean (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo