• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models

Valère Bitseki Penda, Siméon; Olivier, Adélaïde (2017), Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models, Statistical Inference for Stochastic Processes, 20, 2, p. 179–210. 10.1007/s11203-016-9140-6

View/Open
BOv2.pdf (695.4Kb)
Type
Article accepté pour publication ou publié
Date
2017
Journal name
Statistical Inference for Stochastic Processes
Volume
20
Number
2
Publisher
Kluwer Academic Publishers
Pages
179–210
Publication identifier
10.1007/s11203-016-9140-6
Metadata
Show full item record
Author(s)
Valère Bitseki Penda, Siméon

Olivier, Adélaïde
Abstract (EN)
Bifurcating autoregressive processes, which can be seen as an adaptation of au-toregressive processes for a binary tree structure, have been extensively studied during the last decade in a parametric context. In this work we do not specify any a priori form for the two autoregressive functions and we use nonparametric techniques. We investigate both nonasymp-totic and asymptotic behavior of the Nadaraya-Watson type estimators of the autoregressive functions. We build our estimators observing the process on a finite subtree denoted by Tn, up to the depth n. Estimators achieve the classical rate |Tn| −β/(2β+1) in quadratic loss over Hölder classes of smoothness. We prove almost sure convergence, asymptotic normality giving the bias expression when choosing the optimal bandwidth and a moderate deviations principle. Our proofs rely on specific techniques used to study bifurcating Markov chains. Finally, we address the question of asymmetry and develop an asymptotic test for the equality of the two autoregressive functions.
Subjects / Keywords
minimax rates of convergence; Bifurcating Markov chains; binary trees; bifurcating autoregressive processes; non-parametric estimation; asymptotic normality; moderate deviations principle; asymmetry test; Nadaraya-Watson estimator

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive estimation for bifurcating Markov chains 
    Hoffmann, Marc; Olivier, Adélaïde; Valère Bitseki Penda, Siméon (2017) Article accepté pour publication ou publié
  • Thumbnail
    Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model 
    Bitseki Penda, Siméon Valère; Roche, Angelina (2020) Article accepté pour publication ou publié
  • Thumbnail
    Nonparametric estimation of the division rate of an age dependent branching process 
    Hoffmann, Marc; Olivier, Adélaïde (2016) Article accepté pour publication ou publié
  • Thumbnail
    Analyse statistique des modèles de croissance-fragmentation 
    Olivier, Adélaïde (2015-11) Thèse
  • Thumbnail
    How does variability in cells aging and growth rates influence the malthus parameter? 
    Olivier, Adélaïde (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo