Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2018), Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits, Journal of Mathematical Physics, 59, p. n°041901. 10.1063/1.5026963
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01496137Date
2018Journal name
Journal of Mathematical PhysicsNumber
59Pages
n°041901
21
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove that Gibbs measures based on 1D defocusing nonlinear Schrödinger functionals with sub-harmonic trapping can be obtained as the mean-field/large temperature limit of the corresponding grand-canonical ensemble for many bosons. The limit measure is supported on Sobolev spaces of negative regularity and the corresponding density matrices are not trace-class. The general proof strategy is that of a previous paper of ours, but we have to complement it with Hilbert-Schmidt estimates on reduced density matrices.Subjects / Keywords
Mathématiques; Physique mathématique; Gibbs measures; mean-field limitsRelated items
Showing items related by title and author.
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2021) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2016) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2019-06) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2018) Document de travail / Working paper
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Article accepté pour publication ou publié