• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimal functional inequalities for fractional operators on the sphere and applications

Dolbeault, Jean; Zhang, An (2016), Optimal functional inequalities for fractional operators on the sphere and applications, Advanced nonlinear studies, 16, 4, p. 863-880. 10.1515/ans-2016-0121

View/Open
DZ16-final.pdf (429.5Kb)
Type
Article accepté pour publication ou publié
Date
2016
Journal name
Advanced nonlinear studies
Volume
16
Number
4
Publisher
Elsevier
Pages
863-880
Publication identifier
10.1515/ans-2016-0121
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Zhang, An
Abstract (EN)
This paper is devoted to optimal functional inequalities for fractional Laplace operators on the sphere. Based on spectral properties, subcritical inequalities are established. Their consequences for fractional heat flows are considered. These subcritical inequalities interpolate between fractional Sobolev and subcritical fractional logarithmic Sobolev inequalities. Their optimal constants are determined by a spectral gap. In the subcritical range, the method also provides us with remainder terms which can be considered as an improved version of the optimal inequalities. We also consider inequalities which interpolate between fractional logarithmic Sobolev and fractional Poincaré inequalities. Finally, weighted inequalities involving the fractional Laplacian are obtained in the Euclidean space, using a stereographic projection and scaling properties.
Subjects / Keywords
subcritical interpolation inequalities on the sphere; Hardy-Littlewood-Sobolev inequality; stereographic projection; fractional Poincaré inequality; fractional heat flow; fractional Sobolev inequality; spectral gap; fractional logarithmic Sobolev inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Flows and functional inequalities for fractional operators 
    Dolbeault, Jean; Zhang, An (2017) Article accepté pour publication ou publié
  • Thumbnail
    Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators 
    Esteban, Maria J.; Dolbeault, Jean; Bosi, Roberta (2008) Article accepté pour publication ou publié
  • Thumbnail
    Symmetry of extremals of functional inequalities via spectral estimates for linear operators 
    Loss, Michael; Esteban, Maria J.; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities 
    Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo