• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods

Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017), Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods, Kinetic & Related Models, 10, 1, p. 61-91. 10.3934/krm.2017003

View/Open
BDMN-II.pdf (588.7Kb)
Type
Article accepté pour publication ou publié
Date
2017
Journal name
Kinetic & Related Models
Volume
10
Number
1
Publisher
American Institute of Mathematical Sciences
Pages
61-91
Publication identifier
10.3934/krm.2017003
Metadata
Show full item record
Author(s)
Bonforte, Matteo
Dolbeault, Jean cc
Muratori, Matteo
Nazaret, Bruno
Abstract (EN)
This paper is the second part of the study. In Part~I, self-similar solutions of a weighted fast diffusion equation (WFD) were related to optimal functions in a family of subcritical Caffarelli-Kohn-Nirenberg inequalities (CKN) applied to radially symmetric functions. For these inequalities, the linear instability (symmetry breaking) of the optimal radial solutions relies on the spectral properties of the linearized evolution operator. Symmetry breaking in (CKN) was also related to large-time asymptotics of (WFD), at formal level. A first purpose of Part~II is to give a rigorous justification of this point, that is, to determine the asymptotic rates of convergence of the solutions to (WFD) in the symmetry range of (CKN) as well as in the symmetry breaking range, and even in regimes beyond the supercritical exponent in (CKN). Global rates of convergence with respect to a free energy (or entropy) functional are also investigated, as well as uniform convergence to self-similar solutions in the strong sense of the relative error. Differences with large-time asymptotics of fast diffusion equations without weights will be emphasized.
Subjects / Keywords
Hardy-Poincaré inequalities; free energy; Caffarelli-Kohn-Nirenberg inequalities; weights; optimal functions; best constants; Fast diffusion equation; self-similar solutions; asymptotic behavior; intermediate asymptotics; rate of convergence; entropy methods; symmetry breaking; linearization; spectral gap; Harnack inequality; parabolic regularity

Related items

Showing items related by title and author.

  • Thumbnail
    Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities 
    Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
  • Thumbnail
    Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2023) Article accepté pour publication ou publié
  • Thumbnail
    Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities 
    Vazquez, Juan-Luis; Grillo, Gabriele; Dolbeault, Jean; Bonforte, Matteo (2010) Article accepté pour publication ou publié
  • Thumbnail
    Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2020) Document de travail / Working paper
  • Thumbnail
    Asymptotics of the fast diffusion equation via entropy estimates 
    Grillo, Gabriele; Vazquez, Juan-Luis; Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo