
Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form
Armstrong, Scott N.; Lin, Jessica (2017), Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form, Archive for Rational Mechanics and Analysis, 225, 2, p. 937–991. 10.1007/s00205-017-1118-z
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2017Nom de la revue
Archive for Rational Mechanics and AnalysisVolume
225Numéro
2Éditeur
Springer
Pages
937–991
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
We prove quantitative estimates for the stochastic homogenization of linear uniformly elliptic equations in nondivergence form. Under strong independence assumptions on the coefficients, we obtain optimal estimates on the subquadratic growth of the correctors with stretched exponential-type bounds in probability. Like the theory of Gloria and Otto for divergence form equations, the arguments rely on nonlinear concentration inequalities combined with certain estimates on the Green's functions and derivative bounds on the correctors. We obtain these analytic estimates by developing a $C^{1,1}$ regularity theory down to microscopic scale, which is of independent interest and is inspired by the~$C^{0,1}$ theory introduced in the divergence form case by the first author and Smart.Mots-clés
stochastic homogenization; correctors; error estimatePublications associées
Affichage des éléments liés par titre et auteur.
-
Armstrong, Scott N.; Smart, Charles K. (2014) Article accepté pour publication ou publié
-
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Armstrong, Scott N. (2015) Article accepté pour publication ou publié
-
Smart, Charles K.; Armstrong, Scott N. (2014) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Daniel, Jean-Paul (2016) Article accepté pour publication ou publié