• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form

Armstrong, Scott N.; Lin, Jessica (2017), Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form, Archive for Rational Mechanics and Analysis, 225, 2, p. 937–991. 10.1007/s00205-017-1118-z

View/Open
optimalrates.pdf (637.2Kb)
Type
Article accepté pour publication ou publié
Date
2017
Journal name
Archive for Rational Mechanics and Analysis
Volume
225
Number
2
Publisher
Springer
Pages
937–991
Publication identifier
10.1007/s00205-017-1118-z
Metadata
Show full item record
Author(s)
Armstrong, Scott N.

Lin, Jessica
Abstract (EN)
We prove quantitative estimates for the stochastic homogenization of linear uniformly elliptic equations in nondivergence form. Under strong independence assumptions on the coefficients, we obtain optimal estimates on the subquadratic growth of the correctors with stretched exponential-type bounds in probability. Like the theory of Gloria and Otto for divergence form equations, the arguments rely on nonlinear concentration inequalities combined with certain estimates on the Green's functions and derivative bounds on the correctors. We obtain these analytic estimates by developing a $C^{1,1}$ regularity theory down to microscopic scale, which is of independent interest and is inspired by the~$C^{0,1}$ theory introduced in the divergence form case by the first author and Smart.
Subjects / Keywords
stochastic homogenization; correctors; error estimate

Related items

Showing items related by title and author.

  • Thumbnail
    Quantitative stochastic homogenization of elliptic equations in nondivergence form 
    Armstrong, Scott N.; Smart, Charles K. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations 
    Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative stochastic homogenization of viscous Hamilton-Jacobi equations 
    Cardaliaguet, Pierre; Armstrong, Scott N. (2015) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic homogenization of fully nonlinear uniformly elliptic equations revisited 
    Smart, Charles K.; Armstrong, Scott N. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Calderón–Zygmund estimates for stochastic homogenization 
    Armstrong, Scott N.; Daniel, Jean-Paul (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo