
Quantitative Analysis of Boundary Layers in Periodic Homogenization
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe; Prange, Christophe (2017), Quantitative Analysis of Boundary Layers in Periodic Homogenization, Archive for Rational Mechanics and Analysis, 226, 2, p. 695–741. 10.1007/s00205-017-1142-z
View/ Open
Type
Article accepté pour publication ou publiéDate
2017Journal name
Archive for Rational Mechanics and AnalysisVolume
226Number
2Publisher
Springer
Pages
695–741
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.Subjects / Keywords
periodic homogenizationRelated items
Showing items related by title and author.
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2017) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Gloria, Antoine; Kuusi, Tuomo (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Mourrat, Jean-Christophe (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Smart, Charles K. (2014) Article accepté pour publication ou publié