
Calderón–Zygmund estimates for stochastic homogenization
Armstrong, Scott N.; Daniel, Jean-Paul (2016), Calderón–Zygmund estimates for stochastic homogenization, Journal of Functional Analysis, 270, 1, p. 312 - 329. 10.1016/j.jfa.2015.09.014
View/ Open
Type
Article accepté pour publication ou publiéDate
2016Journal name
Journal of Functional AnalysisVolume
270Number
1Publisher
Academic Press
Pages
312 - 329
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove quenched Lp–type estimates for the gradient of a solution of a quasilinear elliptic equation with random coefficients.Subjects / Keywords
Stochastic homogenization; regularity; calculus of variations; error estimatesRelated items
Showing items related by title and author.
-
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Lin, Jessica (2017) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Shen, Zhongwei (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Smart, Charles K. (2014) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Tran, Hung V.; Yu, Yifeng (2015) Article accepté pour publication ou publié