• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Homoclinic orbits with many loops near a 02iω resonant fixed point of Hamiltonian systems

Jézéquel, Tiphaine; Bernard, Patrick; Lombardi, Eric (2016), Homoclinic orbits with many loops near a 02iω resonant fixed point of Hamiltonian systems, Discrete and Continuous Dynamical Systems. Series A, 36, 6, p. 3153-3225. 10.3934/dcds.2016.36.xx

View/Open
Article2_12.pdf (1.082Mb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01251087
Date
2016
Journal name
Discrete and Continuous Dynamical Systems. Series A
Volume
36
Number
6
Publisher
Dept. of Mathematics
Pages
3153-3225
Publication identifier
10.3934/dcds.2016.36.xx
Metadata
Show full item record
Author(s)
Jézéquel, Tiphaine
Institut de Recherche Mathématique de Rennes [IRMAR]
Bernard, Patrick cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lombardi, Eric
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Abstract (EN)
In this paper we study the dynamics near the equilibrium point of a family of Hamiltonian systems in the neighborhood of a 02iω resonance. The existence of a family of periodic orbits surrounding the equilibrium is well-known and we show here the existence of homoclinic connections with several loops for every periodic orbit close to the origin, except the origin itself. The same problem was studied before for reversible non Hamiltonian vector fields, and the splitting of the homoclinic orbits lead to exponentially small terms which prevent the existence of homoclinic connections with one loop to exponentially small periodic orbits. The same phenomenon occurs here but we get round this difficulty thanks to geometric arguments specific to Hamiltonian systems and by studying homoclinic orbits with many loops.
Subjects / Keywords
Normal forms; exponentially small phenomena; invariant manifolds; Gevrey; 02iω; Hamiltonian systems; homoclinic orbits with several loops; generalized solitary waves; KAM, Liapunoff theorem

Related items

Showing items related by title and author.

  • Thumbnail
    Homoclinic connections with many loops near a 02iw resonant fixed point for Hamiltonian systems 
    Jézéquel, Tiphaine; Bernard, Patrick; Lombardi, Eric (2014) Document de travail / Working paper
  • Thumbnail
    Existence of infinitely many homoclinic orbits in Hamiltonian systems 
    Séré, Eric (1992) Article accepté pour publication ou publié
  • Thumbnail
    Normal form near orbit segments of convex Hamiltonian systems 
    Aslani, Shahriar; Bernard, Patrick (2020) Document de travail / Working paper
  • Thumbnail
    Normal form near orbit segments of convex Hamiltonian systems 
    Aslani, Shahriar; Bernard, Patrick (2022) Article accepté pour publication ou publié
  • Thumbnail
    Homoclinic Orbits in Families of Hypersurfaces with Hyperbolic Periodic Orbits 
    Bernard, Patrick (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo