• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On the Convergence Rates of Proximal Splitting Algorithms

Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2014), On the Convergence Rates of Proximal Splitting Algorithms, IEEE International Conference on Image Processing (ICIP 2014), IEEE : Piscataway, NJ. 10.1109/ICIP.2014.7025842

View/Open
icip-rates-2014.pdf (276.9Kb)
Type
Communication / Conférence
Date
2014
Conference title
IEEE International Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France
Conference date
2014-10
Conference city
Paris
Conference country
France
Book title
IEEE International Conference on Image Processing (ICIP 2014)
Publisher
IEEE
Published in
Piscataway, NJ
ISBN
978-1-4799-5751-4
Publication identifier
10.1109/ICIP.2014.7025842
Metadata
Show full item record
Author(s)
Liang, Jingwei
Groupe de Recherche en Informatique, Image et Instrumentation de Caen [GREYC]
Fadili, Jalal
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Peyré, Gabriel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this work, we first provide iteration–complexity bounds (pointwise and ergodic) for the inexact Krasnosel'ski˘ ı–Mann iteration built from nonexpansive operators. Moreover, un-der an appropriate regularity assumption on the fixed point operator, local linear convergence rate is also established. These results are then applied to analyze the convergence rate of various proximal splitting methods in the litera-ture, which includes the Forward–Backward, generalized Forward–Backward, Douglas–Rachford, ADMM and some primal–dual splitting methods. For these algorithms, we develop easily verifiable termination criteria for finding an approximate solution, which is a generalization of the ter-mination criterion for the classical gradient descent method. We illustrate the usefulness of our results on a large class of problems in signal and image processing.
Subjects / Keywords
Convex optimization; Proximal splitting; Convergence rates; Inverse problems

Related items

Showing items related by title and author.

  • Thumbnail
    Identification en temps fini et convergence linéaire locale de l'algorithme proximal implicite-explicite inertiel 
    Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel (2015) Communication / Conférence
  • Thumbnail
    Local Linear Convergence of Inertial Forward-Backward Splitting for Low Complexity Regularization 
    Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel (2015) Communication / Conférence
  • Thumbnail
    Local Linear Convergence Analysis of Primal-Dual Splitting Methods 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2014) Communication / Conférence
  • Thumbnail
    Local Convergence Properties of Douglas–Rachford and Alternating Direction Method of Multipliers 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo