• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Piecewise rigid curve deformation via a Finsler steepest descent

Peyré, Gabriel; Charpiat, Guillaume; Nardi, Giacomo; Vialard, François-Xavier (2015), Piecewise rigid curve deformation via a Finsler steepest descent, Interfaces and Free Boundaries, 18, 1, p. 1-44. 10.4171/IFB/355

View/Open
PiecewiseRigidityGradient.pdf (1.254Mb)
Type
Article accepté pour publication ou publié
Date
2015
Journal name
Interfaces and Free Boundaries
Volume
18
Number
1
Publisher
Oxford University Press
Pages
1-44
Publication identifier
10.4171/IFB/355
Metadata
Show full item record
Author(s)
Peyré, Gabriel
Charpiat, Guillaume
Nardi, Giacomo
Vialard, François-Xavier
Abstract (EN)
This paper introduces a novel steepest descent flow in Banach spaces. This extends previous works on generalized gradient descent, notably the work of Charpiat et al. [15], to the setting of Finsler metrics. Such a generalized gradient allows one to take into account a prior on deformations (e.g., piecewise rigid) in order to favor some specific evolutions. We define a Finsler gradient descent method to minimize a functional defined on a Banach space and we prove a convergence theorem for such a method. In particular, we show that the use of non-Hilbertian norms on Banach spaces is useful to study non-convex optimization problems where the geometry of the space might play a crucial role to avoid poor local minima.We show some applications to the curve matching problem. In particular, we characterize piecewise rigid deformations on the space of curves and we study several models to perform piecewise rigid evolution of curves.
Subjects / Keywords
Curve evolution; Finsler space; gradient flow; shape registration

Related items

Showing items related by title and author.

  • Thumbnail
    Finsler Steepest Descent with Applications to Piecewise-regular Curve Evolution 
    Nardi, Giacomo; Vialard, François-Xavier; Peyré, Gabriel; Charpiat, Guillaume (2013) Document de travail / Working paper
  • Thumbnail
    A Second-order Total Variation Metric on the Space of Immersed Curves 
    Vialard, François-Xavier; Peyré, Gabriel; Nardi, Giacomo (2014) Document de travail / Working paper
  • Thumbnail
    Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics 
    Nardi, Giacomo; Peyré, Gabriel; Vialard, François-Xavier (2016) Article accepté pour publication ou publié
  • Thumbnail
    Optimal Transport for Diffeomorphic Registration 
    Feydy, Jean; Charlier, Benjamin; Vialard, François-Xavier; Peyré, Gabriel (2017) Communication / Conférence
  • Thumbnail
    Scaling Algorithms for Unbalanced Transport Problems 
    Chizat, Lénaïc; Peyré, Gabriel; Schmitzer, Bernhard; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo