Show simple item record

dc.contributor.authorBlanc, Xavier
dc.contributor.authorLewin, Mathieu
dc.date.accessioned2017-11-22T10:03:13Z
dc.date.available2017-11-22T10:03:13Z
dc.date.issued2015
dc.identifier.issn2308-2151
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17012
dc.language.isoenen
dc.subjectCrystallization conjecture
dc.subjectlattice
dc.subjectthermodynamic limit
dc.subjectEpstein zeta function
dc.subjectWigner problem
dc.subject.ddc520en
dc.titleThe Crystallization Conjecture: A Review
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this article we describe the crystallization conjecture. It states that, in appropriate physical conditions, interacting particles always place themselves into periodic configurations, breaking thereby the natural translation-invariance of the system. This famous problem is still largely open. Mathematically, it amounts to studying the minima of a real-valued function defined on R3N where N is the number of particles, which tends to infinity. We review the existing literature and mention several related open problems, of which many have not been thoroughly studied.
dc.relation.isversionofjnlnameEMS Surveys in Mathematical Sciences
dc.relation.isversionofjnlvol2
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages255–306
dc.relation.isversionofdoi10.4171/EMSS/13
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2017-12-20T14:53:17Z
hal.person.labIds25
hal.person.labIds60


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record