• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On the Wasserstein distance between mutually singular measures

Buttazzo, Giuseppe; Carlier, Guillaume; Laborde, Maxime (2018), On the Wasserstein distance between mutually singular measures, Advances in Calculus of Variations, 13, 2, p. 141–154. 10.1515/acv-2017-0036

View/Open
carlier.pdf (492.0Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
Advances in Calculus of Variations
Volume
13
Number
2
Publisher
De Gruyter
Pages
141–154
Publication identifier
10.1515/acv-2017-0036
Metadata
Show full item record
Author(s)
Buttazzo, Giuseppe
Dipartimento di Matematica [Pisa]
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Laborde, Maxime
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study the Wasserstein distance between two measures µ, ν which are mutually singular. In particular, we are interested in minimization problems of the form W (µ, A) = inf W (µ, ν) : ν ∈ A where µ is a given probability and A is contained in the class µ ⊥ of probabilities that are singular with respect to µ. Several cases for A are considered; in particular, when A consists of L 1 densities bounded by a constant, the optimal solution is given by the characteristic function of a domain. Some regularity properties of these optimal domains are also studied. Some numerical simulations are included, as well as the double minimization problem min P (B) + kW (A, B) : |A ∩ B| = 0, |A| = |B| = 1 , where k > 0 is a fixed constant, P (A) is the perimeter of A, and both sets A, B may vary.
Subjects / Keywords
Wasserstein distance; singular measures; perimeter penalization

Related items

Showing items related by title and author.

  • Thumbnail
    Wasserstein interpolation with constraints and application to a parking problem 
    Buttazzo, Giuseppe; Carlier, Guillaume; Eichinger, Katharina (2022) Document de travail / Working paper
  • Thumbnail
    An augmented Lagrangian approach to Wasserstein gradient flows and applications 
    Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016) Article accepté pour publication ou publié
  • Thumbnail
    On the selection of maximal Cheeger sets 
    Buttazzo, Giuseppe; Carlier, Guillaume; Comte, Myriam (2007-03) Article accepté pour publication ou publié
  • Thumbnail
    On Some Systems Controlled by the Structure of Their Memory 
    Buttazzo, Giuseppe; Carlier, Guillaume; Tahraoui, Rabah (2010) Article accepté pour publication ou publié
  • Thumbnail
    Lipschitz Continuity of the Schrödinger Map in Entropic Optimal Transport 
    Carlier, Guillaume; Chizat, Lenaic; Laborde, Maxime (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo