• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost

Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017), A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost, in Glowinski R., Osher S., Yin W., Splitting Methods in Communication, Imaging, Science, and Engineering, Springer : Berlin Heidelberg, p. 577-601. https://doi.org/10.1007/978-3-319-41589-5_17

Type
Chapitre d'ouvrage
External document link
https://hal.inria.fr/hal-01148954
Date
2017
Book title
Splitting Methods in Communication, Imaging, Science, and Engineering
Book author
Glowinski R., Osher S., Yin W.
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-319-41587-1
Pages
577-601
Publication identifier
https://doi.org/10.1007/978-3-319-41589-5_17
Metadata
Show full item record
Author(s)
Benamou, Jean-David
Carlier, Guillaume
Nenna, Luca
Abstract (EN)
In this chapter, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This is related to the strong interaction limit of Density Functional Theory. The first idea is to introduce an entropic regularization of the Kantorovich formulation of the Optimal Transport problem. The regularized problem then corresponds to the projection of a vector on the intersection of the constraints with respect to the Kullback-Leibler distance. Iterative Bregman projections on each marginal constraint are explicit which enables us to approximate the optimal transport plan. We validate the numerical method against analytical test cases.
Subjects / Keywords
coulomb cost

Related items

Showing items related by title and author.

  • Thumbnail
    Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm 
    Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2019) Article accepté pour publication ou publié
  • Thumbnail
    Numerical Methods for Multi-Marginal Optimal Transportation 
    Nenna, Luca (2016-12) Thèse
  • Thumbnail
    A numerical solution to Monge's problem with a Finsler distance as cost 
    Benamou, Jean-David; Carlier, Guillaume; Hatchi, Roméo (2018) Article accepté pour publication ou publié
  • Thumbnail
    Iterative Bregman Projections for Regularized Transportation Problems 
    Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyré, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    An entropy minimization approach to second-order variational mean-field games 
    Benamou, Jean-David; Carlier, Guillaume; Marino, Simone; Nenna, Luca (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo