• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A study of the dual problem of the one-dimensional L-infinity optimal transport problem with applications

de Pascale, Luigi; Louet, Jean (2017-08), A study of the dual problem of the one-dimensional L-infinity optimal transport problem with applications. https://basepub.dauphine.fr/handle/123456789/16901

Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-01504249
Date
2017-08
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Pages
17
Metadata
Show full item record
Author(s)
de Pascale, Luigi
Dipartimento di Matematica Applicata [Firenze] [DMA]
Louet, Jean
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Centre de Recherche Cardiovasculaire de Lariboisiere
Abstract (EN)
The Monge-Kantorovich problem for the infinite Wasserstein distance presents several peculiarities. Among them the lack of convexity and then of a direct duality. We study in dimension 1 the dual problem introduced by Barron, Bocea and Jensen. We construct a couple of Kantorovich potentials which is ''as less trivial as possible''. More precisely, we build a potential which is non constant around any point that the plan which is locally optimal moves at maximal distance. As an application, we show that the set of points which are displaced to maximal distance by a locally optimal transport plan is minimal.
Subjects / Keywords
Duality theory; Optimal transport; Cyclical Monotonicity; Infinite Wasserstein distance

Related items

Showing items related by title and author.

  • Thumbnail
    On the one-dimensional parabolic obstacle problem with variable coefficients 
    Monneau, Régis; Blanchet, Adrien; Dolbeault, Jean (2005) Chapitre d'ouvrage
  • Thumbnail
    On the continuity of the total cost in the mass transport problem with relativistic cost functions 
    Louet, Jean; Pratelli, Aldo; Zeisler, Florian (2016-12) Document de travail / Working paper
  • Thumbnail
    Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation using a finite-difference method 
    Lissy, Pierre; Roventa, Ionel (2019) Article accepté pour publication ou publié
  • Thumbnail
    Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation 
    Lissy, Pierre; Roventa, Ionel (2016) Document de travail / Working paper
  • Thumbnail
    A geometric theory forL 2-stability of the inverse problem in a one-dimensional elliptic equation from anH 1-observation 
    Chavent, Guy; Kunisch, Karl (1993) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo