• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Global Minimum for a Finsler Elastica Minimal Path Approach

Chen, Da; Mirebeau, Jean-Marie; Cohen, Laurent D. (2016), Global Minimum for a Finsler Elastica Minimal Path Approach, International Journal of Computer Vision, 122, 3, p. 458-483. 10.1007/s11263-016-0975-5

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01403941
Date
2016
Nom de la revue
International Journal of Computer Vision
Volume
122
Numéro
3
Éditeur
Kluwer Academic Publishers
Pages
458-483
Identifiant publication
10.1007/s11263-016-0975-5
Métadonnées
Afficher la notice complète
Auteur(s)
Chen, Da
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mirebeau, Jean-Marie
Laboratoire de Mathématiques d'Orsay [LM-Orsay]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Cohen, Laurent D.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
In this paper, we propose a novel curvature penalized minimal path model via an orientation lifted Finsler metric and the Euler elastica curve. The original minimal path model computes the globally minimal geodesic by solving an Eikonal partial differential equation (PDE). Essentially , this first-order model is unable to penalize curvature which is related to the path rigidity property in the classical active contour models. To solve this problem, we present an Eikonal PDE-based Finsler elastica minimal path approach to address the curvature-penalized geodesic energy minimization problem. We were successful at adding the curvature penalization to the classical geodesic energy (Caselles et al, 1997; Cohen and Kimmel, 1997). The basic idea of this work is to interpret the Euler elastica bending energy via a novel Finsler elastica metric that embeds a curvature penalty. This metric is non-Riemannian, anisotropic and asym-metric, and is defined over an orientation lifted space by adding to the image domain the orientation as an extra space dimension. Based on this orientation lifting, the proposed minimal path model can benefit from both the curvature and orientation of the paths. Thanks to the fast marching method, the global minimum of the curvature-penalized geodesic energy can be computed efficiently. We introduce two anisotropic image data-driven speed functions that are computed by steerable filters. Based on these orientation-dependent speed functions, we can apply the proposed Finsler elastica minimal path model to the applications of interactive image segmentation, perceptual grouping and tubular structure extraction. Numerical experiments on both synthetic and real images show that these applications of the proposed model indeed obtain promising results.
Mots-clés
Eikonal Equation ·; Geodesic; Perceptual Grouping; Minimal Path; Curvature Penalty; Anisotropic Fast Marching Method; Euler Elastica Curve; Finsler Metric; Image Segmentation ·; Tubular Structure Extraction

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Global Minimum for Curvature Penalized Minimal Path Method 
    Chen, Da; Cohen, Laurent D.; Mirebeau, Jean-Marie (2015) Communication / Conférence
  • Vignette de prévisualisation
    A New Finsler Minimal Path Model with Curvature Penalization for Image Segmentation and Closed Contour Detection 
    Chen, Da; Mirebeau, Jean-Marie; Cohen, Laurent D. (2016) Communication / Conférence
  • Vignette de prévisualisation
    New Elastica Geodesic Approach with Convexity Shape Prior for Region-based Active Contours and Image Segmentation 
    Chen, Da; Mirebeau, Jean-Marie; Tai, Xue-Cheng; Cohen, Laurent D. (2021) Document de travail / Working paper
  • Vignette de prévisualisation
    Vessel Extraction Using Anisotropic Minimal Paths and Path Score 
    Chen, Da; Cohen, Laurent D.; Mirebeau, Jean-Marie (2014) Communication / Conférence
  • Vignette de prévisualisation
    Finsler Geodesic Evolution Model for Region based Active Contours 
    Chen, Da; Mirebeau, Jean-Marie; Cohen, Laurent D. (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo