• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Approximation of non-Lipschitz SDEs by Picard iterations

Baptiste, Julien; Grepat, Julien; Lépinette, Emmanuel (2018), Approximation of non-Lipschitz SDEs by Picard iterations, Applied Mathematical Finance, 25, 2, p. 148-179. 10.1080/1350486X.2018.1507749

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01397399
Date
2018
Journal name
Applied Mathematical Finance
Volume
25
Number
2
Publisher
Taylor & Francis
Pages
148-179
Publication identifier
10.1080/1350486X.2018.1507749
Metadata
Show full item record
Author(s)
Baptiste, Julien cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Grepat, Julien
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lépinette, Emmanuel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, we propose an approximation method based on Picard iterations deduced from the Doléans–Dade exponential formula. Our method allows to approximate trajectories of Markov processes in a large class, e.g. solutions to non-Lipchitz SDEs. An application to the pricing of Asian-style contingent claims in the CEV model is presented and compared to other methods of the literature.
Subjects / Keywords
Pricing; European Options

Related items

Showing items related by title and author.

  • Thumbnail
    Time discretization of diffusion equations: a functional scheme. 
    Baptiste, Julien; Lépinette, Emmanuel (2017-04) Document de travail / Working paper
  • Thumbnail
    Diffusion equations: convergence of the functional scheme derived from the Binomial tree with local volatility for non smooth payoff functions 
    Baptiste, Julien; Lépinette, Emmanuel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Pricing without martingale measure 
    Baptiste, Julien; Carassus, Laurence; Lépinette, Emmanuel (2018) Document de travail / Working paper
  • Thumbnail
    Stochastic invariance of closed sets for jump-diffusions with non-Lipschitz coefficients 
    Abi Jaber, Eduardo (2017) Article accepté pour publication ou publié
  • Thumbnail
    Monotonicity up to radially symmetric cores of positive solutions to nonlinear elliptic equations: local moving planes and unique continuation in a non-Lipschitz case 
    Felmer, Patricio; Dolbeault, Jean (2004) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo