Learning in Mean Field Games: the Fictitious Play
Cardaliaguet, Pierre; Hadikhanloo, Saeed (2015), Learning in Mean Field Games: the Fictitious Play, ESAIM: Control, Optimisation and Calculus of Variations, 23, 2, p. 569-591. 10.1051/cocv/2016004
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01179503Date
2015-07Journal name
ESAIM: Control, Optimisation and Calculus of VariationsVolume
23Number
2Pages
569-591
Publication identifier
Metadata
Show full item recordAuthor(s)
Cardaliaguet, PierreCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Hadikhanloo, Saeed
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Mean Field Game systems describe equilibrium configurations in differential games with infinitely many infinitesimal interacting agents. We introduce a learning procedure (similar to the Fictitious Play) for these games and show its convergence when the Mean Field Game is potential.Subjects / Keywords
Mean field games; learningRelated items
Showing items related by title and author.
-
Hadikhanloo, Saeed (2018-01-29) Thèse
-
Cardaliaguet, Pierre; Cirant, Marco; Poretta, Alessio (2020) Article accepté pour publication ou publié
-
Hadikhanloo, Saeed; Laraki, Rida; Mertikopoulos, Panayotis; Sorin, Sylvain (2021) Document de travail / Working paper
-
Cardaliaguet, Pierre; Delarue, François; Lasry, Jean-Michel; Lions, Pierre-Louis (2019) Ouvrage
-
Cardaliaguet, Pierre; Porretta, Alessio (2019) Article accepté pour publication ou publié