Stable solutions in potential mean field game systems
dc.contributor.author | Briani, Ariela
HAL ID: 2328 | |
dc.contributor.author | Cardaliaguet, Pierre | |
dc.date.accessioned | 2017-10-31T13:24:19Z | |
dc.date.available | 2017-10-31T13:24:19Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1021-9722 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/16879 | |
dc.language.iso | en | en |
dc.subject | mean field game systems | |
dc.subject.ddc | 519 | en |
dc.title | Stable solutions in potential mean field game systems | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We introduce the notion of stable solution in mean field game theory: they are locally isolated solutions of the mean field game system. We prove that such solutions exist in potential mean field games and are local attractors for learning procedures. | |
dc.relation.isversionofjnlname | NoDEA. Nonlinear Differential Equations and Applications | |
dc.relation.isversionofjnlvol | 25 | |
dc.relation.isversionofjnlissue | 1 | |
dc.relation.isversionofjnldate | 2018 | |
dc.relation.isversionofdoi | 10.1007/s00030-017-0493-3 | |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-01408948 | |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2018-07-20T14:21:29Z |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |