A note on Bayes factor consistency in partial linear models
Taeryon, Choi; Rousseau, Judith (2015), A note on Bayes factor consistency in partial linear models, Journal of Statistical Planning and Inference, 166, p. 158-170. 10.1016/j.jspi.2015.03.009
Type
Article accepté pour publication ou publiéDate
2015Journal name
Journal of Statistical Planning and InferenceVolume
166Publisher
Elsevier
Pages
158-170
Publication identifier
Metadata
Show full item recordAuthor(s)
Taeryon, ChoiDepartment of Statistics
Rousseau, Judith
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Centre de Recherche en Économie et Statistique [CREST]
Abstract (EN)
It has become increasingly important to understand the asymptotic behavior of the Bayes factor for model selection in general statistical models. In this paper, we discuss recent results on Bayes factor consistency in semiparametric regression problems where observations are independent but not identically distributed. Specifically, we deal with the model selection problem in the context of partial linear models in which the regression function is assumed to be the additive form of the parametric component and the nonparametric component using Gaussian process priors, and Bayes factor consistency is investigated for choosing between the parametric model and the semiparametric alternative.Subjects / Keywords
Bayes factor; Consistency; Fourier series; Gaussian processes; Hellinger distance; Kullback–Leibler neighborhoods; Lack of fit testingRelated items
Showing items related by title and author.
-
Taeryon, Choi; Rousseau, Judith (2012) Document de travail / Working paper
-
Rousseau, Judith (2007) Communication / Conférence
-
Rousseau, Judith (2014) Communication / Conférence
-
Scricciolo, Catia; Rousseau, Judith; Rizzelli, Stefano; Petrone, Sonia (2014) Article accepté pour publication ou publié
-
Scricciolo, Catia; Rousseau, Judith; Petrone, Sonia (2014) Article accepté pour publication ou publié