• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Key Recovery Using Noised Secret Sharing with Discounts over Large Clouds

Thumbnail
View/Open
PID2896501 Big Data Final.pdf (266.6Kb)
Date
2013
Dewey
Organisation des données
Sujet
Big data; Key recovery; Privacy; Noise; Complexity theory; Timing; Encryption; Information management; Data handling
DOI
http://dx.doi.org/10.1109/SocialCom.2013.105
Conference name
2013 International Conference on Social Computing (SocialCom)
Conference date
09-2013
Conference city
Washington, DC
Conference country
United States
Book title
2013 International Conference on Social Computing (SocialCom)
Author
Chang, L.W.; Srivastava, Jaideep; Zhan, Justin
Publisher
IEEE
Publisher city
Piscataway, NJ
Year
01-2014
Pages number
1094
ISBN
978-0-7695-5137-1
URI
https://basepub.dauphine.fr/handle/123456789/16696
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Jajodia, Sushil
169231 Interdisciplinary Center for Economic Science, George Mason University
Litwin, Witold
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Schwarz, Thomas
223187 Université d'Uruguay
Type
Communication / Conférence
Item number of pages
700-707
Abstract (EN)
Encryption key loss problem is the Achilles's heel of cryptography. Key escrow helps, but favors disclosures. Schemes for recoverable encryption keys through noised secret sharing alleviate the dilemma. Key owner escrows a specifically encrypted backup. The recovery needs a large cloud. Cloud cost, money trail should rarefy illegal attempts. We now propose noised secret sharing schemes supporting discounts. The recovery request with discount code lowers the recovery complexity, easily by orders of magnitude. A smaller cloud may suffice for the same recovery timing. Alternatively, same cloud may provide faster recovery etc. Our schemes appear useful for users attracted to Big Data, but afraid of possibly humongous consequences of the key loss or data disclosure.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.