Show simple item record

hal.structure.identifierUniversite Bilkent [Ankara]
dc.contributor.authorKaraşan, Oya Ekin*
hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorMahjoub, Ali Ridha*
hal.structure.identifierUniversite Bilkent [Ankara]
dc.contributor.authorÖzkök, Onur*
hal.structure.identifierUniversite Bilkent [Ankara]
dc.contributor.authorYaman, Hande*
dc.date.accessioned2017-09-04T09:07:17Z
dc.date.available2017-09-04T09:07:17Z
dc.date.issued2014
dc.identifier.issn1091-9856
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16673
dc.language.isoenen
dc.subjecthierarchical network designen
dc.subjecttwo-edge connectednessen
dc.subjectdual-homing survivabilityen
dc.subjectfacetsen
dc.subjectbranch and cuten
dc.subjectvariable fixingen
dc.subject.ddc004en
dc.titleSurvivability in Hierarchical Telecommunications Networks Under Dual Homingen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe motivation behind this study is the essential need for survivability in the telecommunications networks. An optical signal should find its destination even if the network experiences an occasional fiber cut. We consider the design of a two-level survivable telecommunications network. Terminals compiling the access layer communicate through hubs forming the backbone layer. To hedge against single link failures in the network, we require the backbone subgraph to be two-edge connected and the terminal nodes to connect to the backbone layer in a dual-homed fashion, i.e., at two distinct hubs. The underlying design problem partitions a given set of nodes into hubs and terminals, chooses a set of connections between the hubs such that the resulting backbone network is two-edge connected, and for each terminal chooses two hubs to provide the dual-homing backbone access. All of these decisions are jointly made based on some cost considerations. We give alternative formulations using cut inequalities, compare these formulations, provide a polyhedral analysis of the small-sized formulation, describe valid inequalities, study the associated separation problems, and design variable fixing rules. All of these findings are then utilized in devising an efficient branch-and-cut algorithm to solve this network design problem.en
dc.relation.isversionofjnlnameINFORMS Journal on Computing
dc.relation.isversionofjnlvol26en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2014-02
dc.relation.isversionofjnlpages1-15en
dc.relation.isversionofdoi10.1287/ijoc.1120.0541en
dc.subject.ddclabelInformatique généraleen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2017-09-04T08:34:20Z
hal.identifierhal-01616214*
hal.version1*
hal.update.actionupdateMetadata*
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record