Show simple item record

dc.contributor.authorCouceiro, Miguel*
dc.contributor.authorHaddad, Lucien*
dc.contributor.authorSchölzel, Karsten*
dc.contributor.authorWaldhauser, Tamas*
dc.date.accessioned2017-08-28T15:37:34Z
dc.date.available2017-08-28T15:37:34Z
dc.date.issued2017
dc.identifier.issn1542-3980
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16642
dc.language.isoenen
dc.subjectPartial boolean clonesen
dc.subject.ddc512en
dc.titleA Solution to a Problem of D. Lau: Complete Classification of Intervals in the Lattice of Partial Boolean Clonesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe following natural problem, first considered by D. Lau, has been tackled by several authors recently: Let C be a total clone on 2 := {0, 1}. Describe the interval I(C) of all partial clones on 2 whose total component is C. We establish some results in this direction and combine them with previous ones to show the following dichotomy result: For every total clone C on 2, the set I(C) is either finite or of continuum cardinality.en
dc.relation.isversionofjnlnameJournal of Multiple-Valued Logic and Soft Computing
dc.relation.isversionofjnlvol28en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2017
dc.relation.isversionofjnlpages47-58en
dc.identifier.urlsitehttps://hal.inria.fr/hal-01183004en
dc.relation.isversionofjnlpublisherOCP Scienceen
dc.subject.ddclabelAlgèbreen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2017-07-24T13:23:56Z
hal.person.labIds989*
hal.person.labIds130123*
hal.person.labIds106066*
hal.person.labIds409319*
hal.identifierhal-01593588*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record