Show simple item record

hal.structure.identifierGroupe d’études et de recherche en analyse des décisions [GERAD]
dc.contributor.authorHertz, Alain*
hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorRies, Bernard*
dc.date.accessioned2017-08-28T13:10:20Z
dc.date.available2017-08-28T13:10:20Z
dc.date.issued2016
dc.identifier.issn0354-0243
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16632
dc.language.isoenen
dc.subjectTreesen
dc.subjectequitable coloringen
dc.subjectindependent setsen
dc.subject.ddc511en
dc.titleA note on r-equitable k-colorings of treesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenA graph G = (V, E) is r-equitably k-colorable if there exists a partition of V into k independent sets V1,V2,···,Vk such that| |Vi|−|Vj| | ≤r for all i,j ∈ {1,2,···,k}. In this note, we show that if two trees T1 and T2 of order at least two are r-equitably k-colorable for r≥1 and k ≥3, then all trees obtained by adding an arbitrary edge between T1 and T2 are also r-equitably k-colorable.en
dc.relation.isversionofjnlnameYugoslav Journal of Operations Research
dc.relation.isversionofjnlvol24en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2014
dc.relation.isversionofjnlpages293-298en
dc.relation.isversionofdoi10.2298/YJOR130704039Hen
dc.relation.isversionofjnlpublisherUniversity of Belgraden
dc.subject.ddclabelPrincipes généraux des mathématiquesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2017-07-24T14:37:28Z
hal.identifierhal-01593566*
hal.version1*
hal.update.actionupdateMetadata*
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record