• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Thèses
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Thèses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Nouveaux modèles de chemins minimaux pour l'extraction de structures tubulaires et la segmentation d'images

New Minimal Path Model for Tubular Extraction and Image Segmentation

Chen, Da (2016), Nouveaux modèles de chemins minimaux pour l'extraction de structures tubulaires et la segmentation d'images, doctoral thesis prepared under the supervision of Cohen, Laurent David, Université Paris Dauphine

View/Open
2016PSLED037.pdf (11.57Mb)
Type
Thèse
Date
2016-09
Metadata
Show full item record
Author(s)
Chen, Da
Under the direction of
Cohen, Laurent David
Abstract (FR)
Dans les domaines de l’imagerie médicale et de la vision par ordinateur, la segmentation joue un rôle crucial dans le but d’extraire les composantes intéressantes d’une image ou d’une séquence d’images. Elle est à l’intermédiaire entre le traitement d’images de bas niveau et les applications cliniques et celles de la vision par ordinateur de haut niveau. Ces applications de haut niveau peuvent inclure le diagnostic, la planification de la thérapie, la détection et la reconnaissance d'objet, etc. Parmi les méthodes de segmentation existantes, les courbes géodésiques minimales possèdent des avantages théoriques et pratiques importants tels que le minimum global de l’énergie géodésique et la méthode bien connue de Fast Marching pour obtenir une solution numérique. Dans cette thèse, nous nous concentrons sur les méthodes géodésiques basées sur l’équation aux dérivées partielles, l’équation Eikonale, afin d’étudier des méthodes précises, rapides et robustes, pour l’extraction de structures tubulaires et la segmentation d’image, en développant diverses métriques géodésiques locales pour des applications cliniques et la segmentation d’images en général.
Abstract (EN)
In the fields of medical imaging and computer vision, segmentation plays a crucial role with the goal of separating the interesting components from one image or a sequence of image frames. It bridges the gaps between the low-level image processing and high level clinical and computer vision applications. Among the existing segmentation methods, minimal geodesics have important theoretical and practical advantages such as the global minimum of the geodesic energy and the well-established fast marching method for numerical solution. In this thesis, we focus on the Eikonal partial differential equation based geodesic methods to investigate accurate, fast and robust tubular structure extraction and image segmentation methods, by developing various local geodesic metrics for types of clinical and segmentation tasks. This thesis aims to applying different geodesic metrics based on the Eikonal framework to solve different image segmentation problems especially for tubularity segmentation and region-based active contours models, by making use of more information from the image feature and prior clinical knowledges. The designed geodesic metrics basically take advantages of the geodesic orientation or anisotropy, the image feature consistency, the geodesic curvature and the geodesic asymmetry property to deal with various difficulties suffered by the classical minimal geodesic models and the active contours models. The main contributions of this thesis lie at the deep study of the various geodesic metrics and their applications in medical imaging and image segmentation. Experiments on medical images and nature images show the effectiveness of the presented contributions.
Subjects / Keywords
Chemin minimal; Géodésique; Équation différentielle partielle Eikonal; Segmentation d'images; Structure tubulaire segmentation; Contours actifs; Courbe de elastica Euler; Meric Riemann; Finsler métrique; Peine de courbure; Méthode de marche rapide; Minimal path; Geodesic; Eikonal partial differential equation; Image segmentation; Tubular structure segmentation; Active contours; Euler elastica curve; Riemannian meric; Finsler metric; Curvature penalty; Ast marching method

Related items

Showing items related by title and author.

  • Thumbnail
    Extraction of Tubular and Tree Structures in Biomedical Images using Minimal Paths and Tubular Models 
    Cohen, Laurent D. (2010) Communication / Conférence
  • Thumbnail
    A New Finsler Minimal Path Model with Curvature Penalization for Image Segmentation and Closed Contour Detection 
    Chen, Da; Mirebeau, Jean-Marie; Cohen, Laurent D. (2016) Communication / Conférence
  • Thumbnail
    A New Dynamic Minimal Path Model for Tubular Structure Centerline Delineation 
    Chen, Da; Cohen, Laurent D. (2018) Communication / Conférence
  • Thumbnail
    Minimal Paths for Tubular Structure Segmentation With Coherence Penalty and Adaptive Anisotropy 
    Chen, Da; Zhang, Jiong; Cohen, Laurent D. (2019) Article accepté pour publication ou publié
  • Thumbnail
    Automatic Vessel Tree Structure Extraction by Growing Minimal Paths and a Mask 
    Chen, Da; Cohen, Laurent D. (2014) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo