• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Finding Disjoint Paths on Edge-Colored Graphs: A Multivariate Complexity Analysis

Dondi, Riccardo; Sikora, Florian (2016), Finding Disjoint Paths on Edge-Colored Graphs: A Multivariate Complexity Analysis, in Chan, T-H. Hubert; Li, Minming; Wang, Lusheng, Combinatorial Optimization and Applications: 10th International Conference, COCOA 2016, Springer International Publishing : Cham, p. 113-127. 10.1007/978-3-319-48749-6_9

Type
Communication / Conférence
External document link
https://arxiv.org/abs/1609.04951v1
Date
2016
Conference title
10th International Conference on Combinatorial Optimization and Applications ( COCOA 2016)
Conference date
2016-12
Conference city
Hong Kong
Conference country
China
Book title
Combinatorial Optimization and Applications: 10th International Conference, COCOA 2016
Book author
Chan, T-H. Hubert; Li, Minming; Wang, Lusheng
Publisher
Springer International Publishing
Published in
Cham
ISBN
978-3-319-48748-9
Number of pages
793
Pages
113-127
Publication identifier
10.1007/978-3-319-48749-6_9
Metadata
Show full item record
Author(s)
Dondi, Riccardo
Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali
Sikora, Florian cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
The problem of finding the maximum number of vertex-disjoint uni-color paths in an edge-colored graph (MaxCDP) has been recently introduced in literature, motivated by applications in social network analysis. In this paper we investigate how the complexity of the problem depends on graph parameters (distance from disjoint paths and size of vertex cover), and that is not FPT-approximable. Moreover, we introduce a new variant of the problem, called MaxCDDP, whose goal is to find the maximum number of vertex-disjoint and color-disjoint uni-color paths. We extend some of the results of MaxCDP to this new variant, and we prove that unlike MaxCDP, MaxCDDP is already hard on graphs at distance two from disjoint paths.
Subjects / Keywords
FPT; graph theory; computational complexity

Related items

Showing items related by title and author.

  • Thumbnail
    Finding disjoint paths on edge-colored graphs: more tractability results 
    Dondi, Riccardo; Sikora, Florian (2018) Article accepté pour publication ou publié
  • Thumbnail
    Hamiltonian problems in edge-colored complete graphs and Eulerian cycles in edge-colored graphs: some complexity results 
    Benkouar, A.; Manoussakis, Yannis; Paschos, Vangelis; Saad, Rachid (1996) Article accepté pour publication ou publié
  • Thumbnail
    On paths, trails and closed trails in edge-colored graphs 
    Gourvès, Laurent; Lyra, Adria; Martinhon, Carlos A.; Monnot, Jérôme (2012) Article accepté pour publication ou publié
  • Thumbnail
    On s-t paths and trails in edge-colored graphs 
    Gourvès, Laurent; Martinhon, Carlos A.; Monnot, Jérôme; Adria, Lyra; Protti, Fabio (2009) Article accepté pour publication ou publié
  • Thumbnail
    On the complexity of some Hamiltonian and Eulerian problems in edge-colored complete graphs (Extended abstract) 
    Benkouar, A.; Manoussakis, Yannis; Paschos, Vangelis; Saad, Rachid (1991) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo