Show simple item record

dc.contributor.authorLang, Jérôme
dc.date.accessioned2017-03-30T15:25:25Z
dc.date.available2017-03-30T15:25:25Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16470
dc.descriptionLNCS vol. 9345en
dc.language.isoenen
dc.subjectknowledge representationen
dc.subjectsocial choiceen
dc.subject.ddc003en
dc.titleAlgorithmic Decision Theory Meets Logic : Invited Talken
dc.typeCommunication / Conférence
dc.description.abstractenAlgorithmic decision theory can be roughly defined as the design and study of languages and methods for expressing and solving various classes of decision problems, including: decision under uncertainty, sequential decision making, multicriteria decision making, collective decision making, and strategic interactions in distributed decision making.en
dc.identifier.citationpages14-19en
dc.relation.ispartoftitleLogic Programming and Nonmonotonic Reasoning. Proceedingsen
dc.relation.ispartofeditorCalimeri, Francesco
dc.relation.ispartofeditorIanni, Giovambattista
dc.relation.ispartofeditorTruszczynski, Miroslaw
dc.relation.ispartofpublnameSpringer International Publishingen
dc.relation.ispartofpublcityChamen
dc.relation.ispartofdate2015
dc.relation.ispartofpages574en
dc.subject.ddclabelRecherche opérationnelleen
dc.relation.ispartofisbn978-3-319-23263-8en
dc.relation.conftitle13th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR 2015)en
dc.relation.confdate2015-09
dc.relation.confcityLexington, KYen
dc.relation.confcountryUnited Statesen
dc.relation.forthcomingnonen
dc.identifier.doi10.1007/978-3-319-23264-5en
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2017-03-30T15:17:12Z
hal.person.labIds989
hal.identifierhal-01498922*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record