• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Weighted sum model with partial preference information: application to Multi-Objective Optimization

Kaddani, Sami; Vanderpooten, Daniel; Vanpeperstraete, Jean-Michel; Aissi, Hassene (2017), Weighted sum model with partial preference information: application to Multi-Objective Optimization, European Journal of Operational Research, 260, 2, p. 665-679. 10.1016/j.ejor.2017.01.003

Type
Article accepté pour publication ou publié
Date
2017
Journal name
European Journal of Operational Research
Volume
260
Number
2
Pages
665-679
Publication identifier
10.1016/j.ejor.2017.01.003
Metadata
Show full item record
Author(s)
Kaddani, Sami
DCNS Research
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Vanderpooten, Daniel
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Vanpeperstraete, Jean-Michel
DCNS Research
Aissi, Hassene
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Multi-objective optimization problems often lead to large nondominated sets, as the size of the problem or the number of objectives increases. Generating the whole nondominated set requires significant computation time, while most of the corresponding solutions are irrelevant to the decision maker (DM). Optimizing an aggregation function reduces the computation time and produces one or a very limited number of more focused solutions. This requires, however, the elicitation of precise preference parameters, which is often difficult and partly arbitrary, and might discard solutions of interest. An intermediate approach consists in using partial preference information with an aggregation function. In this work, we present a preference relation based on the weighted sum aggregation, where weights are not precisely defined. We give some properties of this preference relation and define the set of preferred points as the set of nondominated points with respect to this relation. We provide an efficient and generic way of generating this preferred set using any standard multi-objective optimization algorithm. This approach shows competitive performances both on computation time and quality of the generated preferred set.
Subjects / Keywords
Multiple objective programming; Weighted sum; Partial preference information

Related items

Showing items related by title and author.

  • Thumbnail
    Partial preference models in discrete multi-objective optimization 
    Kaddani, Sami (2017-03-10) Thèse
  • Thumbnail
    Robust approaches for the data association problem 
    Aissi, Hassene; Vanderpooten, Daniel; Vanpeperstraete, Jean-Michel (2005) Communication / Conférence
  • Thumbnail
    Approches de résolution exacte et approchée en optimisation combinatoire multi-objectif, application au problème de l'arbre couvrant de poids minimal 
    Lacour, Renaud (2014-07) Thèse
  • Thumbnail
    Discrete representation of the non-dominated set for multi-objective optimization problems using kernels 
    Bazgan, Cristina; Jamain, Florian; Vanderpooten, Daniel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Efficient computation of the search region in multi-objective optimization 
    Dächert, Kerstin; Klamroth, Kathrin; Lacour, Renaud; Vanderpooten, Daniel (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo