• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Propositional Update Operators Based on Formula/Literal Dependence

Herzig, Andreas; Lang, Jérôme; Marquis, Pierre (2013), Propositional Update Operators Based on Formula/Literal Dependence, ACM Transactions on Computational Logic, 14, 3, p. 24:1-24:31. 10.1145/2499937.2499945

View/Open
Herzig_12416.pdf (787.6Kb)
Type
Article accepté pour publication ou publié
Date
2013
Journal name
ACM Transactions on Computational Logic
Volume
14
Number
3
Publisher
ACM
Pages
24:1-24:31
Publication identifier
10.1145/2499937.2499945
Metadata
Show full item record
Author(s)
Herzig, Andreas cc
Institut de recherche en informatique de Toulouse [IRIT]
Lang, Jérôme
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Marquis, Pierre
Centre de Recherche en Informatique de Lens [CRIL]
Abstract (EN)
We present and study a general family of belief update operators in a propositional setting. Its operators are based on formula/literal dependence, which is more fine-grained than the notion of formula/variable dependence that was proposed in the literature: formula/variable dependence is a particular case of formula/literal dependence. Our update operators are defined according to the “forget-then-conjoin” scheme: updating a belief base by an input formula consists in first forgetting in the base every literal on which the input formula has a negative influence, and then conjoining the resulting base with the input formula. The operators of our family differ by the underlying notion of formula/literal dependence, which may be defined syntactically or semantically, and which may or may not exploit further information like known persistent literals and pre-set dependencies. We argue that this allows to handle the frame problem and the ramification problem in a more appropriate way. We evaluate the update operators of our family w.r.t. two important dimensions: the logical dimension, by checking the status of the Katsuno-Mendelzon postulates for update, and the computational dimension, by identifying the complexity of a number of decision problems (including model checking, consistency and inference), both in the general case and in some restricted cases, as well as by studying compactability issues. It follows that several operators of our family are interesting alternatives to previous belief update operators.
Subjects / Keywords
Logic; Algorithms; Languages; Theory; Knowledge representation; Update; Computational complexity

Related items

Showing items related by title and author.

  • Thumbnail
    Updates, actions and planning 
    Herzig, Andreas; Lang, Jérôme; Marquis, Pierre; Polacsek, T. (2001) Communication / Conférence
  • Thumbnail
    Introspective forgetting 
    van Ditmarsch, Hans; Herzig, Andreas; Lang, Jérôme; Marquis, Pierre (2009) Article accepté pour publication ou publié
  • Thumbnail
    Introspective Forgetting 
    van Ditmarsch, Hans; Herzig, Andreas; Lang, Jérôme; Marquis, Pierre (2008) Communication / Conférence
  • Thumbnail
    Reasoning About Action and Change 
    Dupin De Saint-Cyr, Florence; Herzig, Andreas; Lang, Jérôme; Marquis, Pierre (2020) Chapitre d'ouvrage
  • Thumbnail
    Raisonnement sur l’action et le changement 
    Dupin de Saint-Cyr, Florence; Herzig, Andreas; Lang, Jérôme; Marquis, Pierre (2014) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo