Bounded Correctors in Almost Periodic Homogenization
Armstrong, Scott N.; Gloria, Antoine; Kuusi, Tuomo (2016), Bounded Correctors in Almost Periodic Homogenization, Archive for Rational Mechanics and Analysis, 222, 1, p. 393-426. 10.1007/s00205-016-1004-0
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1509.08390v2Date
2016Journal name
Archive for Rational Mechanics and AnalysisVolume
222Number
1Publisher
Springer
Pages
393-426
Publication identifier
Metadata
Show full item recordAbstract (EN)
We show that certain linear elliptic equations (and systems) in divergence form with almost periodic coefficients have bounded, almost periodic correctors. This is proved under a new condition we introduce which quantifies the almost periodic assumption and includes (but is not restricted to) the class of smooth, quasiperiodic coefficient fields which satisfy a Diophantine-type condition previously considered by Kozlov (Mat Sb (N.S), 107(149):199–217, 1978). The proof is based on a quantitative ergodic theorem for almost periodic functions combined with the new regularity theory recently introduced by Armstrong and Shen (Pure Appl Math, 2016) for equations with almost periodic coefficients. This yields control on spatial averages of the gradient of the corrector, which is converted into estimates on the size of the corrector itself via a multiscale Poincaré-type inequality.Subjects / Keywords
Analysis of PDEsRelated items
Showing items related by title and author.
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe; Prange, Christophe (2017) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Shen, Zhongwei (2016) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2017) Article accepté pour publication ou publié
-
Lions, Pierre-Louis; Souganidis, Panagiotis E. (2005) Article accepté pour publication ou publié