• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Stable limits for sums of dependent infinite variance random variables

Bartkiewicz, Katarzyna; Jakubowski, Adam; Mikosch, Thomas; Wintenberger, Olivier (2011), Stable limits for sums of dependent infinite variance random variables, Probability Theory and Related Fields, 150, 3-4, p. 337-372. 10.1007/s00440-010-0276-9

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
https://arxiv.org/abs/0906.2717v4
Date
2011
Nom de la revue
Probability Theory and Related Fields
Volume
150
Numéro
3-4
Éditeur
Springer
Pages
337-372
Identifiant publication
10.1007/s00440-010-0276-9
Métadonnées
Afficher la notice complète
Auteur(s)
Bartkiewicz, Katarzyna
Jakubowski, Adam
Mikosch, Thomas
Wintenberger, Olivier
Résumé (EN)
The aim of this paper is to provide conditions which ensure that the affinely transformed partial sums of a strictly stationary process converge in distribution to an infinite variance stable distribution. Conditions for this convergence to hold are known in the literature. However, most of these results are qualitative in the sense that the parameters of the limit distribution are expressed in terms of some limiting point process. In this paper we will be able to determine the parameters of the limiting stable distribution in terms of some tail characteristics of the underlying stationary sequence. We will apply our results to some standard time series models, including the GARCH(1, 1) process and its squares, the stochastic volatility models and solutions to stochastic recurrence equations.
Mots-clés
Stationary sequence; Stable limit distribution; Weak convergence; Mixing; Weak dependence; Characteristic function; Regular variation; GARCH; Stochastic volatility model; ARMA process

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains 
    Wintenberger, Olivier; Mikosch, Thomas (2014) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Precise large deviations for dependent regularly varying sequences 
    Wintenberger, Olivier; Mikosch, Thomas (2013) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Deviation inequalities for sums of weakly dependent time series 
    Wintenberger, Olivier (2010) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Continuous invertibility and stable QML estimation of the EGARCH(1,1) model 
    Wintenberger, Olivier (2013) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Model selection and randomization for weakly dependent time series forecasting 
    Wintenberger, Olivier; Alquier, Pierre (2009) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo