• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Geodesic Shape Retrieval via Optimal Mass Transport

Thumbnail
Date
2010
Link to item file
https://hal.archives-ouvertes.fr/hal-00498607
Dewey
Traitement du signal
Sujet
2-D and 3-D shape retrieval
DOI
http://dx.doi.org/10.1007/978-3-642-15555-0_56
Conference name
11th European Conference on Computer Vision – ECCV 2010
Conference date
09-2010
Conference city
Heraklion (Crète)
Conference country
Greece
Book title
Computer Vision – ECCV 2010. 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part V
Author
Kostas Daniilidis, Petros Maragos, Nikos Paragios
Publisher
Springer Berlin Heidelberg
Year
2010
ISBN
978-3-642-15554-3
Book URL
10.1007/978-3-642-15555-0
URI
https://basepub.dauphine.fr/handle/123456789/16392
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Rabin, Julien
Peyré, Gabriel
Cohen, Laurent D.
Type
Communication / Conférence
Item number of pages
771-784
Abstract (EN)
This paper presents a new method for 2-D and 3-D shape retrieval based on geodesic signatures. These signatures are high dimensional statistical distributions computed by extracting several features from the set of geodesic distance maps to each point. The resulting high dimensional distributions are matched to perform retrieval using a fast approximate Wasserstein metric. This allows to propose a unifying framework for the compact description of planar shapes and 3-D surfaces.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.